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INTRODUCTION

Judges have been removing the individual plaintiff from tort cases, of-
ten as a byproduct of a campaign against “junk science.”' In place of the
individual plaintiff, they have been installing an abstract “statistical individ-
nal” and adopting rules that decide cases on statistical grounds. This Article
argues that, ironically, the reasoning behind these decisions and rules is too
often an example of the “junk logic” that judges should be avoiding. The
Article analyzes the logical warrant for findings of fact about specific causa-
tion and uses that analysis to critique such rules as (1) a “0.5 inference rule”
for factﬁnding,2 (2) a “greater-than-50%" rule for evaluating the legal suffi-
ciency of evidence,’ and (3) certain rules of admissibility following the Su-
preme Court’s decisions in Daubert and Kumho Tire.* Judges are using such
rules to wrongly decide a wide variety of tort cases, from products liability
cases to medical malpractice to toxic exposure cases.’

This Article demonstrates that the many kinds of uncertainty inherent in
warranted findings about specific causation require the factfinder to make
decisions that are necessarily pragmatic, non-scientific, and non-statistical
in nature. Such uncertainties are inherent in the logic of specific causation,
and are not peculiar to toxic tort cases, or to epidemiologic evidence, or
even to scientific evidence. The presence of significant degrees of such un-
certainty makes it impossible to prove specific causation in any factual or
scientific sense. Warranted findings must rest upon the common sense,
practical fairness, and rough justice of the factfinder, except in categories of
cases where tort policies can justify the adoption of decision rules for the
entire category. Such rules, however, should not rest on the misguided sta-
tistical reasoning of past cases, but on proper policy foundations. If this

1. On the campaign against “junk science,” see General Electric Co. v. Joiner, 522 U.8. 136, 153,
154 n.6 (1997) (Stevens, J., concurring in part and dissenting in part) (distinguishing the expert “weight
af the evidence” reasoning in that case from “the sort of ‘junk science’ with which Daubert was con-
cerned”); Amorgianos v. National Railroad Passenger Corp., 303 F.3d 256, 267 (2d Cir. 2002) (stating
that “[t]he flexible Daubert inquiry gives the district court the discretion needed to ensure that the court-
room door remains closed to junk science while admitting reliable expert testimony that will assist the
trier of fact”); and Daubert v. Merrell Dow Pharm., Inc., 43 F.3d 1311, 1321, 1322 n.18 (9th Cir. 1995)
(stating that an expert’s excluded testimony in that case “‘illustrates how the two prongs of Rule 702 [of
the Federal Rules of Evidence] work in tandem to ensure that junk science is kept out of the federal
courtroom’).

2. Seeinfra Part 1ILB.1.

3. SeeinfraPant IILB.2,

4.  See infra Part IL.B.3.

5. E.g., XYZv. Schering Health Care Ltd., (2002] EW.H.C. 1420 (QB), 2002 WL 1446183 (July
29, 2002) (finding against the claimants in products liability cases against manufacturers of oral contra-
ceptives because they failed to prove a relative nisk greater than 2.0); Fennell v. S. Md. Hosp. Crr., Inc,,
580 A.2d 206 (Md. 1990} (holding, in a medical malpractice case, that evidence of a loss of a 40% chance of
survival was legally insufficient for satisfying the plaintiff’s burden of proving that the defendant caused the
plaintiff’s death); /n re Hanford Nuclear Reservation Litig,, 292 F.3d 1124 (9th Cir. 2002) (holding, in
cases brought against facility operators for injuries from radioactive emissions, that the district court
erred in excluding plaintiffs’ expert testimony, but leaving intact on remand the district court’s ruling
that admissible evidence on specific causation must show that exposure to the radioactive emissions at
least doubled the plaintiffs’ baseline risks).
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Article can clear away these logical misunderstandings, perhaps judges will
provide better policy justifications and develop better rules.

Tort law uses the term “specific causation,” sometimes called “individ-
ual causation,” to refer to the factual issue of which particular events caused
or will cause a particular injury in a specific plaintiff.6 Specific causation is
distinguished from “general causation,” also called “generic causation,”
which addresses whether there is any causal relationship at all between
types of events and types of injuries.” Specific causation is whether a spe-
cific event caused or will cause a specific injury, while general causation is
whether such events can (ever) cause such injuries.® Usually, for a plaintiff
to win damages in a tort case, the plaintiff must prove both general and spe-
cific causation.”

A finding about specific causation can be prospective and predictive, as
in: “It is unlikely that the defendant’s negligent conduct, which resulted in
the exposure of Jessica Jones to benzene, will cause her to develop lung
cancer.” Or a finding might be retrospective and explanatory, as in: “It is
unlikely that the defendant’s negligent conduct and Jessica Jones’s resulting
exposure to benzene caused her lung cancer.” This Article argues that both
versions, despite their temporal differences, have a similar logical structure
in their warrant. Therefore, the analysis provided here applies to both pro-
spective and retrospective findings of specific causation.

The central epistemic problem posed by specific causation is justifying
how a less-than-universal generalization about causation in groups can ever
warrant a probabilistic finding about causation in a specific case.'” When

6. E.g.,DeLucav. Merrell Dow Pharm., Inc., 911 F.2d 941, 957-59 (3d Cir. 1990) (reasoning from
the plaintiff’s burden of proving causation by “a more likely than net standard” to a requirement that
epidemiologic evidence alone would be legally insufficient evidence of specific causation unless it
showed a “relative risk of limb reduction defects” of at least two); Hanford, 292 F.3d at 1129, 1133
(using the term “individual causation” to refer to the question of “whether a particular individual suffers
from a particular ailment as a result of exposure to a substance”); Michael D. Green et al., Reference
Guide on Epidemiology, in REFERENCE MANUAL ON SCIENTIFIC EVIDENCE 333, 396 (2d ed. 2000)
(defining “specific causation”), available at http://www fjc.gov/public/pdf.nsfflookup/sciman06.pdf/$file
/sciman06.pdf; Joseph Sanders & Julie Machal-Fulks, The Admissibility of Differential Diagnosis Testi-
mony to Prove Causation in Toxic Tort Cases: The Interplay of Adjective and Substantive Law, 64 LAW
& CONTEMP. PrOBS. 107, 110 (2001).

7. E.g, Merrell Dow Pharm., Inc. v. Havner, 953 S.W.2d 706, 714 (Tex. 1997) (defining
“[gleneral causation” as “whether a substance is capable of causing a particular injury or condition in the
general population™); Hanford, 292 F.3d at 1133 (defining “general” or “‘generic causation” to mean
“whether the substance at issue had the capacity to cause the harm alleged™); Sterling v. Velsicol Chem.
Corp., 855 F.2d 1188, 1200 (6th Cir. 1988) (defining “generic causation™); In re “Agent Orange” Prod.
Liab. Litig., 818 F.2d 1435, 165 (2d Cir, 1987) (identifying the “generic causation” issue); Green et al.,
supra note 6, at 392 (defining “general causation”).

8. Commentators have also accepted the usefulness of the distinction. £.g., Green et al., supra note
6, at 381-86 (discussing the role of epidemiologic evidence in proving specific causation in addition to
general causation); Bernard D. Goldstein & Mary Sue Henifin, Reference Guide on Toxicology, in
REFERENCE MANUAL ON SCIENTIFIC EVIDENCE 401, 422-26 (2d ed. 2000) (discussing toxicology and
causation in the individual case), availabie at hup:/fwww.fjc.gov/public/pdf.nsfllookup/scimanQ7.pdf/$fi
le/sciman07.pdf.

9. See, e.g., Hanford, 292 F.3d at 1134 (stating that plaintiffs must establish both generic and
individual causation); Havrer, 953 S.W.2d at 714-15 (discussing general and specific causarion).

10. The logical structure of warrant for a direct inference, which this Article examines, is distinct
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and why does statistical evidence about causation in a group warrant a find-
ing of causation in a specific member of the group? For example, if 10% of
people who experience a certain type of chemical exposure later develop
cancer as a result of that exposure, what is the probability that the exposure
of a specific person (for example, Jessica Jones) will cause (or did cause)
her to develop cancer? What reason is there to place her in the 10% cate-
gory, as opposed to the 90% category? The problem of justification exists
regardless of the magnitude of the statistics. If 75% of certain types of pa-
tients at a certain stage of a disease die within five years from the normal
progression of the disease, despite the best treatment, then what is the prob-
ability that a specific individual with the disease, who was misdiagnosed
when her disease was at the relevant stage and who subsequently died
within five years, would have died from the disease in any case, despite the
misdiagnosis? Warranted findings about such questions depend upon infer-
ences from what typically (or statistically) happens in groups of which the
specific individual is a member."’

This Article shows that every warranted finding about specific causa-
tion possesses certain types of uncertainty or potential for error. Part I of the
Article examines uncertainties about general causation that decrease the
warrant or evidentiary support for a conclusion about specific causation. It
demonstrates that there are four logically distinct types of uncertainty that
are necessarily present: measurement uncertainty, sampling uncertainty,
modeling uncertainty, and causal uncertainty. For each type of uncertainty,
there are techniques for reducing and characterizing the extent or degree of
uncertainty. In the end, however, a reasonable factfinder must decide
whether the residual uncertainty of each type is acceptable or not for pur-
poses of the tort case—that is, for warranting a conclusion of specific causa-
tion in the context of tort law.

Part II of the Article analyzes two additional uncertainties involved in
drawing a conclusion about a specific individual. The first section addresses
the problem of identifying the appropriate group to serve as a reference

from the cognitive process of producing possible generalizations on which to base a direct inference. For
an example of an analysis of the latter process, see JEROME P. KASSIRER & RICHARD 1. KOPELMAN,
LEARNING CLINICAL REASONING 2-46 (1991) (analyzing the process of generating, refining, and verify-
ing medical hypotheses for diagnosing diseases of specific patients in a clinical setting).

11. A parallel, evolving paradigm in medicine is called evidence-based medicine (EBM), in which
physicians evaluate the best available scientific information and apply it to specific patients. David L.
Sackett et al., Evidence Based Medicine: What It Is and What It Isn’t, 312 BRIT. MED. J. 71-72 (1996)
(defining EBM as “the conscientious, explicit, and judicious use of current best evidence in making
decisions about the care of individual patients”), available at hup://bmj.bmjjournals.com/cgi/con
tent/full/312/7023/71; DAN MAYER, ESSENTIAL EVIDENCE-BASED MEDICINE 9-15 (2004) (discussing
six steps in the process of EBM).

Another related paradigm in logic and artificial intelligence is “‘abduction,” or “inference to the
best explanation,” which is a process of reasoning from an effect to an explanatory cause. See
ABDUCTIVE INFERENCE: COMPUTATION, PHILOSOPHY, TECHNOLOGY S, 17 (John R. Josephson & Susan
G. Josephson eds., 1994). However, the definition of abduction sometimes excludes direct inference. See
id. at 23-24.
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group for that individual."” It examines the warrant for finding that a refer-
ence group adequately represents the specific individual—that is, that it
adequately matches the plaintiff in all causally relevant variables, such as
being a woman, being age forty, having no history of cancer in the immedi-
ate family, and so forth. The second section of Part II discusses the uncer-
tainty in assigning a particular probability to the individual case, even when
the reference group adequately represents the specific individual. These two
major sources of uncertainty can be called, respectively, uncertainty about
plaintiff-representativeness and uncertainty about assigning a probability to
the individual plaintiff.

Part III of the Article summarizes all of these uncertainties into a coher-
ent factfinding approach. It then uses this logical analysis to critique certain
judicial rules that are threatening individualized factfinding in tort law. The
argument is that for each type of uncertainty, as well as for the overall un-
certainty, someone must decide whether the residual uncertainty is accept-
able for the purposes of tort law. Such decisions cannot be purely epistemic
or scientific in nature, because they involve balancing the expected risks
and benefits of making findings in the face of uncertainty, as well as weigh-
ing the equitable treatment of the parties and other non-epistemic considera-
tions."> While expertise can inform certain aspects of those decisions, there
is no reason to think that experts are the optimal decision-makers. Policy-
based rules are needed to determine who should decide such questions (the
Jjury or the judge) and whether such decisions should be made on case-
specific factors or on rules governing categories of cases.

Unfortunately, instead of facing such non-epistemic issues squarely and
developing policies and rules to address them, many judges have relied on
faulty reasoning to adopt unjustified rules that appear to be logically com-
pelling. The second section of Part III examines a variety of cases in which
Judges have relied on such fallacious reasoning—cases involving judicial
factfinding about liability for oral contraceptives, judicial rulings on suffi-
ciency of evidence in medical malpractice cases, and judicial decisions on
admissibility of expert testimony in toxic-exposure cases. Specific causation
in such cases cannot be a scientific issue, however, and any decisions
should be justified on substantive policy grounds, not statistical grounds. It
is reasonable to hope that once such judges better understand the warrant for

12, For the logical literature taking formal, technical approaches to the problem of the reference
class, see HANS REICHENBACH, THE THEORY OF PROBABILITY 372-78 (1949) (approaching the problem
of the reference class by considering “the narrowest class for which reliable statistics can be compiled”);
Isaac Levi, Direct Inference and Confirmational Conditionalization, 48 PHIL. OF SCI. 532 (1981) (con-
sidering three approaches to selecting reference sets for direct inference), available at http://www.jstor.o
rg/view/00318248/ap010194/01a00030/0; and Henry E. Kyburg, Jr., The Reference Class, 50 PHIL. OF
Scl. 374 (1983), available at hup://www.jstor.org/view/00318248/ap010201/01a00020/0.

13.  See, e.g., ARIEL PORAT & ALEX STEIN, TORT LIABILITY UNDER UNCERTAINTY 18-56 (2001)
(evaluating various decision rules for allocating uncertainty in tort law using the non-¢pistemic policies
of utility and fairmess); RICHARD GOLDBERG, CAUSATION AND RISK IN THE LAW OF TORTS: SCIENTIFIC
EVIDENCE AND MEDICINAL PRODUCT LIABILITY 190-212 (1999) (evaluating a probabilistic approach to
causation from the standpoint of non-epistemic goals, especially economic efficiency).
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finding specific causation, they will rest their rulings on a proper policy
basis, and restore the individual plaintiff to tort law.

1. UNCERTANTIES AND WARRANT IN FINDING GENERAL CAUSATION:
PROVIDING A MAJOR PREMISE FOR A DIRECT INFERENCE
TO SPECIFIC CAUSATION

The first step toward restoring individualized decision-making in tort
law is to understand the logical role of uncertainty in inferences about spe-
cific causation. One reasonable approach to warranting a finding about spe-
cific causation is to infer it from empirical evidence about general causa-
tion—that is, from evidence about causal relationships in groups of which
the specific plaintiff is a member, Logicians call such reasoning from group
generalizations 1o specific instances a “direct inference.”™ A typical direct
inference has the following form:"

Most things in category A are also in category 5.

This specific individual s in category A.

Therefore, this specific individual is probably also in category B.
An example is:

Most people who receive a certain dose of a particular chemical ex-
perience nausea.

This specific person will receive that dose of the chemical.

Therefore, this specific person will probably also experience nau-
sea.

Direct inferences use information about group proportions there, “most
things in category A” and “most people who receive a certain dose of a par-
ticular chemical”) to help warrant findings about specific individuals.

{4.  Kyburg, supra note 12; Isaac Levi, Direct inference, 74 J. PHiL. 5 (1977) {hereinafter Direct
Inference), available ar hup:ifwww.jstor.org/view/D022362x/di973127/97p0003v/0; Levi, supra note 132,
JouN L. PoLLoCK, NOMIC PROBABILITY AND THE FOUNDATIONS OF INDUCTION 108-48 (1990).

15. Instead of using category variables (variables that identify groups or sets of individuals), an
equivalent formulation of direct inference can use propositional variables (variables that stand for whole
propositions or statements). Using the variables p and g to stand for any two propositions or statements,
the standard form of direct inference would be:

in most situations when p is true, g is also true.

In this specific situzation, p is true.

Therefore, in this specific shmation, probably g is also true.
The implicit quantification is not over individuals as members of sets but over situations as characterized
by whether p and g are true.
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Many direct inferences use somewhat vague group proportions (such as
“very few,” “about half of,” or “almost all”) to warrant findings with de-
grees of probability that are ordinal in nature (expressed in such terms as
“unlikely,” “equally likely,” and “highly likely”). For example:

Very few things in category A are also in category B.
This specific thing is in category A.
Therefore, it is unlikely that this specific thing is also in category B.

Some direct inferences use cardinal quantities, and are called “statistical
syllogisms,”'® such as:

X% of things in category A are also in category B.
This specific individual is in category A.

Therefore, there is a probability of X% that this specific individual
‘is also in category B.

In this quantitative formulation, a statistic from the group evidence helps
warrant a mathematical probability that the conclusion is true."”

Regardless of how the direct inference is formulated, a major source of
inferential uncertainty is the fact that the generalization is not universal: not
all things in A have characteristic B, and only a subset of As are Bs. If every
member of A were also a member of B, then an inference that any specific
individual in A is also in B would be deductively valid.'® Instead, even if the
two premises of a direct inference are true, the conclusion can still be false.
Therefore, a direct inference is defeasible, and is at best presumptively
sound.'®

A direct inference argument consists of two premises and a conclusion.
The first or major premise is a generalization (or a statistical generalization)
asserting that some proportion of things in category A are in fact also in

16.  For examples of this terminology, see ABDUCTIVE INFERENCE: COMPUTATION, PHILOSOPHY,
TECHNOLOGY, supra note 11, at 23-24; JOHN L. POLLOCK & JOSEPH CRUZ, CONTEMPORARY THEORIES
OF KNOWLEDGE 229-30 (2d ed. 1999); and WESLEY C. SALMGON, LoGIc 87-91 (2d ed. 1973).

17.  The inference is called a “statistical syllogism” because a statistical premise (such as “X percent
of Fs are G”) is used instead of a universal generalization (“All Fs are G”'). POLLOCK, supra note 14, at
75-78; SALMON, supra note 16, at 88-91. Toulmin calls the more general form of argument “quasi-
syllogistic.” STEPHEN EDELSTON TOULMIN, THE USES OF ARGUMENT 109-11, 131-34, 139-41 (1958).
For an early recognition of the difficulty posed by such inferences for legal theory, see George F. James,
Relevancy, Probability, and the Law, 29 CaL. L. REV. 689 (1941).

18. See, e.g., POLLOCK & CRUZ, supra note 16, at 229; Vern R. Walker, Direct Inference in the Lost
Chance Cases: Factfinding Constraints Under Minimal Fairness to Parties, 23 HOFSTRA L. REV. 247
(1994).

19.  For a discussion on defeasible or presumptive reasoning, see DOUGLAS N. WALTON,
ARGUMENTATION SCHEMES FOR PRESUMPTIVE REASONING 17-45 (1996).
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category B. Ways of expressing such a generalization include: “Most things
having characteristic A also have property B”; “Most As are also Bs”; or “In
most cases, if something is an A, then it is also a B.” Some examples are:
“The majority of adult Americans weigh over 100 pounds”; “Over half of
the men in the study who took the drug developed a rash”; and “Approxi-
mately five of every 1000 persons of northern European descent are homo-
zygous for the recessive gene for hemochromatosis.”

The second or minor premise of a direct inference is a categorical asser-
tion that a specific individual is in category A, is a member of group A, or is
characterized as having property A. Logicians call group A the “reference
class” or “reference group.””® The minor premise identifies some specific
individual (for example, “Jessica Jones,” or “the current President of the
United States,” or “the wife of the victim” in a particular tort case) and clas-
sifies that individual as being a member of group A.

The conclusion of the direct inference is a probabilistic proposition stat-
ing that, with some degree of probability, the same individual identified in
the minor premise is also in category B, or is also a member of group B, or
also has characteristic B.2' There are various ways of expressing degrees of
probability in English, such as: “This individual is probably a B”; “It is
probably the case that this individual is a B””; “More likely than not this in-
dividual is a B”; or “There is a 0.6 probability that this individual is a B.”

This Article examines a particular use of direct inference or statistical
syllogism—namely, to warrant conclusions about specific causation in tort
cases. In this use, a causal relation to category A is one of the defining prop-
erties of category B. When used to warrant an inference to specific causa-
tion, direct inference takes a more particular form:

Most individuals in category A are also in category B as a result of
being in category A.

This specific individual is in category A.

Therefore, this specific individual is probably also in category B, as
a result of being in category A.

For example, category A might be “people exposed to chemical C,” and
category B might be “people who develop cancer as a result of exposure to
chemical C.” The major premise would be “most people exposed to chemi-

20. See, e.g., HENRY E. KYBURG, JR., SCIENCE AND REASON 41 (1990) [hereinafier SCIENCE AND
REASON]; BRIAN SKYRMS, CHOICE AND CHANCE: AN INTRODUCTION TO INDUCTIVE LOGIC 201 (2d ed.
1975).

21.  Ayer considered such a proposition to be a distinct class of judgments, which he called “judge-
ments of credibility.” A. J. AYER, PROBABILITY AND EVIDENCE 27-29, 54-61 (1972). As he said, “the
judgement that such and such an individual smoker will probably die of lung cancer, if it is genuinely a
judgement about this individual, and not just about the class of smokers to which he belongs, is a judge-
ment of credibility.” Id. at 28.
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cal C are also people who develop cancer as a result of that exposure.”>
Causation is a criterion for being a member of subgroup B. Although some
concept of causal relationship or causal link helps to define category B, the
validity of the direct inference is independent of any particular meaning
given to “causation.”® A vague concept of causation may well increase the
uncertainty about the membership of group B (as discussed below), but that
problem is distinct from the more general problem of warranting direct in-
ferences. The warranting problem analyzed in this Article is independent of
the problem of how to define legal causation.

This part of the Article analyzes the sources and types of uncertainty in-
herent in finding the major premise of the direct inference to be true. For
each kind of uncertainty, the factfinder should decide how extensive the
residual uncertainty is and whether that residual uncertainty is acceptable
for the purposes of tort law.?* In analyzing uncertainty, the discussion intro-
duces a number of logical and statistical concepts, such as random and bi-
ased error, statistical significance and statistical power, and relative risk and
regression analysis. Such concepts, while precisely defined within science,
are refinements of common-sense notions that routinely guide the reasoning
of everyday life. The analysis uses these concepts to identify the kinds of
uncertainty that are logically inherent in the major premise about general
causation. By using scientific concepts to elucidate common-sense logic, the
analysis also provides a conceptual bridge between the evidence of the ex-
pert witness and the findings of the non-expert factfinder, and it lays a foun-
dation for investigating degrees of evidentiary support between legally
available evidence and findings of fact.

A. Acceptable Measurement Uncertainty: Evaluating
the Precision and Accuracy of Classifications

Knowledge about general causation rests upon observational evidence,
which ranges from the casual perceptions of everyday experience to the
carcfully conducted measurements of scientists. The warrant for a generali-
zation about causation is only as strong as those underlying observations.
Observations or measurements, from the logical point of view, are acts of

22. A statistical syllogism about specific causation would have a similar structure. For example:
40% of individuals in category A are also in a category B as a result of being in category A.
This specific individual is in category A.
Therefore, there is a probability of 40% that this specific individual is also in category B, as a
result of being in category A.
Using the chemical-exposure example in the text, such a major premise would be: “40% of people ex-
posed to chemical C also develop cancer as a result of that exposure to chemical C.”

23.  For problems with defining legal cause, see DAN B. DoBBS, THE LAW OF TORTS 405-41 (2001);
W. PAGE KEETON ET AL., PROSSER AND KEETON ON THE LAW OF TORTS 263-321 (5th ed. 1984); and
RESTATEMENT (SECOND) OF TORTS §§ 430-32.

24.  For a general treatment of the epistemic role of theories of uncertainty, see Vern R. Walker,
Theories of Uncertainty: Explaining the Possible Sources of Error in Inferences, 22 CARDOZO L. REV.
1523 (2001).
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classifying individual objects or events into the classification categories of a
predicate or variable. When people (including trained researchers) observe
objects or events, gather information about them, or form opinions about
them, they are classifying them into categories under some variable. When
scientists record the results of such acts of classification, they call such
summary reports “data.” The value or score for an individual on a variable
is the name of the classification category in which the individual is placed.
A data set might record the heights of the students in a particular room, the
LSAT scores of an entering law school class, the salaries of male and fe-
male employees in a corporation, or the symptoms of the plaintiffs in a tort
suit.

Uncertainty, or the potential for error, is inherent in every observation
or measurement and, therefore, in the data reporting those classifications.”
If there are misclassifications in the data, this may result in erroneous con-
clusions about groups of individuals. Scientists generally call this the grob-
lem of measurement error or measurement uncertainty about the data.”® The
potential for misclassifying an individual object or event arises from many
sources. For example, if classification categories are not mutually exclu-
sive” and exhaustive,*® the design of the classification system can increase
the likelihood of inconsistent classifications. Inconsistencies in classifica-
tion can also arise due to predicate vagueness—when there are not clear and

25.  See, e.g., NAT'L RESEARCH COUNCIL, SCIENCE AND JUDGMENT IN RISK ASSESSMENT 161
(1994) (defining “‘uncertainty’” as “a lack of precise knowledge as to what the truth is, whether qualita-
tive or quantitative’). Uncertainty is distinct from varizbility in the data. Even if there were no uncer-
tainty in the individual measurements, there could still be considerable variability in the data, reflecting
actual differences in classification between the individuals measured. See, e.g., id. at 221 n.1 (discussing
variability as referring to “a dispersion of possible or actual values” or to “individual-to-individual
differences in quantities associated with predicted risk™).

26.  There are many general texts on measurement theory, including EDWARD G. CARMINES &
RICHARD A. ZELLER, RELIABILITY AND VALIDITY ASSESSMENT (Michael S. Lewis-Beck ed., 1979), and
EDWIN E. GHISELLI ET AL., MEASUREMENT THEORY FOR THE BEHAVIORAL SCIENCES (1981). There are
also references dealing with particular techniques of measurement, such as MEASUREMENT ERRORS IN
SURVEYS (Paul P. Biemer et al. eds., 1991); Theodore Peters & James O. Westgard, Evaluation of Meth-
ods, in TEXTBOOK OF CLINICAL CHEMISTRY 410 (Norbert W. Tietz ed., 1986); and Lloyd A. Currie,
Sources of Error and the Approach to Accuracy in Analytical Chemistry, in 1 TREATISE ON ANALYTICAL
CHEMISTRY 119-22 (I. M. Kolthoff & Philip J. Elving eds., 2d ed. 1978). Some gencral statistics texts
have good trcatments of measurement error, such as DAVID FREEDMAN ET AL., STATISTICS 90-101, 247-
81, 395-411 (2d ed. 1991). For additional discussion and documentation, see . M. Cameron, Error
Analysis, in 2 ENCYCLOPEDIA OF STATISTICAL SCIENCES 545, 550 (Samuel Kotz & Norman L. Johnson,
eds., 1982); David H. Kaye & David A. Freedman, Reference Guide on Siwtistics, in REFERENCE
MANUAL ON SCIENTIFIC EVIDENCE 83, 102-04 (Fed. Judicial Ctr., 2d ed. 2000); and Vermn R. Walker,
The Siren Songs of Science: Toward a Taxonomy of Scientific Uncertainty for Decisionmakers, 23
CoNN. L. REv. 567, 580-88 (1991) [hereinafter Siren Songs].

27. E.g., HERMAN J. LOETHER & DONALD G. McTAVISH, DESCRIPTIVE AND INFERENTIAL
STATISTICS: AN INTRODUCTION 17 (4th ed. 1993); H. T. Reynolds, Nominal Data, in 6 ENCYCLOPEDIA
OF STATISTICAL SCIENCES 256 (Samuel Kotz & Norman L. Johnson, eds., 1985). If the variable is color,
then the categories “yellow” and “non-red” are not mutually exclusive because a yellow object can be
properly classified into either category.

28. E.g., LOETHER & MCTAVISH, supra note 27, at 17; Reynolds, supra note 27, at 256. If the
variable is color, then the categories “red” and “blue” are not exhaustive because yellow objects would
properly fit into neither category. Adding the category “other” would create an exhaustive set of catego-
ries.
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operational criteria for classifying individuals into one category as opposed
to another. This is a problem inherent to the predication structure of thought
itself, not merely language.29 When classification criteria are vague or non-
existent, there are insufficient guidelines for coordinating a classification
process conducted by different people, or even by the same person over
time. Other sources of classification error are not due to flaws in the design
of the predicates involved, but to causal aspects of the classification process.
Inconsistent classifications can arise because human beings differ in their
judgments, miscalculate, are inattentive, or act from ulterior motives. In-
struments can malfunction, or they may operate erratically outside certain
tolerances. Such causes of misclassification can sometimes be addressed by
providing better training, redesigning instruments, and setting up procedures
for quality control and assurance. Actual measurement processes, however,
will always remain causal processes, and will produce measurements with
some degree of variability.

An important objective in everyday life, in science, and in the court-
room is to identify the extent of uncertainty in those classifications that pro-
vide the evidentiary support for generalizations, in order to estimate the
extent to which inferences are based upon actual differences in the world, as
opposed to error in measuring the world.® Scientists have various tech-
niques for detecting, characterizing, and reducing the measurement uncer-
tainty due to misclassification. To the extent that there is random error
(“scatter” or “noise’’) in the data,”’ experts say there is “imprecision” in the
data or measurement process.”> This refers to the inconsistency of results
when the measurement process is used to classify the same individual a
number of times. When scientists refer to a measurement process as being
“reliable,” they mean that it produces the same classification results on re-
peated measurements of the same thing.*® A perfectly reliable measurement

29.  The problem of vagueness is sometimes grouped with other concept design problems under the
gencral umbrella of “linguistic imprecision.” See, e.g., M. GRANGER MORGAN & MAX HENRION,
UNCERTAINTY: A GUIDE TO DEALING WITH UNCERTAINTY IN QUANTITATIVE RISK AND POLICY
ANALYSIS 50, 60-62 (1990). Vagueness, however, is not always simply a matter of “sloppy language.” It
is a problem inherent to the predication structure of thought itself, not merely one’s use of language.
There is no reason to be as optimistic as Morgan and Henrion, who write: *“Whereas many sources of
uncertainty, including lack of information and compuiational limitations, are often expensive or impos-
sible to eliminate, uncertainty due to linguistic imprecision is usually relatively easy to remove with a bit
of clear thinking.” Id. at 61-62.

30. Cf NAT'L RESEARCH COUNCIL, supra note 25, at 188-91 (illustrating how “uncertainty and
variability can complement or confound each other™).

31. Interms to be introduced in Part L.C, there is ne “correlation” between errors due to unreliability
and the true value. CARMINES & ZELLER, supra note 26, at 30; JACOB COHEN & PATRICIA COHEN,
APPLIED MULTIPLE REGRESSION/CORRELATION ANALYSIS FOR THE BEHAVIORAL SCIENCES 68 (2d ed.
1983).

32. A retest or re-measurement of the same thing under similar conditions is sometimes called a
“replication experiment.” The term “precision” is sometimes used to refer to the “agreement between
replicate measurements,” and the degree of imprecision is the magnitude of the random scatter around
the true value. See John Mandel, Accuracy and Precision: Evaluation and Interpretation of Analytical
Results, in 1 TREATISE ON ANALYTICAL CHEMISTRY 256-60 (LM. Kolthoff & Philip J. Elving cds., 2d
ed. 1978); Peters & Westgard, supra note 26, at 412 (analytical chemistry).

33.  For further discussions of reliability, see CARMINES & ZELLER, supra note 25, at 11-13, 29-51;
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process would produce exactly the same classification every time the same
individual is classified. On the other hand, an unreliable measurement proc-
ess produces some degree of random error from even repeated acts of classi-
fication.

Regardless of the source, if the resulting error is symmetrical and ran-
dom, then it can be expected to “cancel out” over a long run of repeated
measurements.** For example, if a large number of repeated measurements
are taken, a symmetrical frequency distribution around the mean value
would be expected.” The degree of dispersion in the repeat-measurement
data can be used to characterize the unreliability or imprecision of the meas-
urement process.*® For example, the variance or standard deviation for a set
of repeated measurements indicates the amount of variability around the
central value.”

Variation is not the same as uncertainty.”® How much variation there is
in a data set depends upon the construction of the variable and the character-
istics of the individuals in the group. Uncertainty is a very different matter.
It is the potential for error in a proposition or inference.”® The fact that indi-

FREEDMAN ET AL., supra note 26, at 90-101, 395-411; GHISELLI ET AL., supra note 26, at 184, 191;
Robert M. Groves, Measurement Error Across the Disciplines, in MEASUREMENT ERRORS IN SURVEYS
1-25 (Paul P. Biemer et al. eds., 1991); and Mandel, supra note 32, at 259.

34.  The third important dimension of any data set is its form or shape. The form of the distribution
is determined by how the individual values are actually distributed over the categories of the variable, If
a frequency distribution is symmetrical, then the distributions on each side of the central tendency are
mirror images of each other. In a perfectly symmetrical distribution, the mean and median have the same
value; MICHAEL O. FINKELSTEIN & BRUCE LEVIN, STATISTICS FOR LAWYERS 3-4 (2d ed. 2001);
WILLIAM L. HAYS, STATISTICS 180 (Sth ed. 1994). A frequency distribution might not be symmetrical,
however, but rathcr skewed toward one end of the scale, A skewed distribution has asymmetrical “tails,”
with values at one extreme disproportionate to the other. HAYS, supra, at 180; LOETHER & MCTAVISH,
supra note 27, at 119-20.

35.  This issue is closely related to sampling theory, discussed in Part LLB. The error terms of the
repeat measurements are expected to average zero over the very long run if these errors resuli from a
very large number of causal factors, and they are expected to be unbiased in net result. See FREEDMAN
ET AL., supra note 26, at 90-101, 247-81, 395-411; HAYS, supra note 34, at 247-49, Examples are
heights of human beings and other natural biological traits. See id. at 243-44, 247-49; FINKELSTEIN &
LEVIN, supra note 34, at 113-15; MORGAN & HENRION, supra note 29, at 85-88. The normal distribution
provides a convenient approximaticn for many sampling distributions based on large sample sizes. See
HAYS, supra note 34, at 243-44. Many statistical texts provide basic accounts of the formal characteris-
tics of the normal distribution. E.g., id. at 237-60; FINKELSTEIN & LEVIN, supra note 34, at 113-19;
MORRIS HAMBURG, STATISTICAL ANALYSIS FOR DECISION MAKING 191-211 (3d ed. 1987); LOETHER &
MCTAVISH, supra note 27, at 125-29; MORGAN & HENRION, supra note 29, at 85-88; Kaye & Freedman,
supra note 26, at 153-59.

36. See CARMINES & ZELLER, supra note 26, at 43-47 (discussing Cronbach’s alpha); GHISELLI ET
AL., supra note 26, at 193-94, 204, 205-07 (discussing reliability coefficients).

37.  The variance is the arithmetic average of the squared differences between the individual values
and the mean. The standard deviation reverses the squaring operation by taking the square root of the
variance. See, e.g., HAYS, supra note 34, at 182-84; LOETHER & MCTAVISH, supra note 27, at 137.

38.  See e.g., MORGAN & HENRION, supra note 29, at 62-63; NAT'L RESEARCH COUNCIL, supra
note 25, at 160-223.

39. In a sense, the dispersion or variability is an indication of the error associated with using a
central tendency statistic as a predictor for the group of individual cases. As one statistics author has put
it:

If central tendency measures are thought of as good bets about observations in a distribution,
measures of spread represent the other side of the question: Dispersion reflects the “poor-

HeinOnline -- 56 Ala. L. Rev. 392 2004-2005



2004] Restoring the Individual Plaintiff to Tort Law 393

viduals are classified in different categories (variation) is an issue quite dis-
tinct from whether they are classified correctly (uncertainty). There can be
variation without much uncertainty, and uncertainty without observed varia-
tion. Variation is a feature of objects or events (a characteristic of the
world), while uncertainty is a feature of our information or inferences about
those objects or events (a characteristic of our beliefs about the world). Con-
fusion has a way of setting in, however, in part because experts sometimes
use statistics of dispersion to characterize uncertainty.

If the results of a reliability experiment can be generalized to all results
of that measurement process, then the standard deviation from the reliability
study might warrant an estimate of the unreliability associated with any
single measurement. If it is necessary or desirable to reduce the amount of
error due to unreliability, however, one approach is to take a number of
measurements of the subject individual and to calculate an average value to
use in lieu of a single observation. Another approach is to redesign the
measurement process to bring the degree of unreliability within acceptable
bounds. Perhaps a redesigned measurement instrument would produce more
precise data. There may also be a trade-off between the reliability of the
measurement process and the unit of measurement. An instrument used to
measure length to a hundredth of an inch might do so with a high degree of
imprecision, but the instrument might produce far more reliable results
measuring length only in feet. This merely means that retests will produce
more consistent answers when measurements are taken in feet than when
they are taken in hundredths of inches. The pragmatic question is whether
length measured to the nearest foot provides acceptable imprecision.*

The notion of “validity” captures a very different aspect of measure-
ment uncertainty. The validity of the results of a measurement process con-
cerns whether the data in fact measure what they are supposed to measure.*'
Validity is said to address the “accuracy” of the measurement process, not
its precision.* An instrument that tends to overestimate length presents a

ness” of central tendency as a description of a randomly selected case, the tendency of obser-
vations not to be like the average.
HAYS, supra note 34, at 182.

40.  Carrying a number to decimal places well beyond what can be warranted given the level of
precision of the measurement method is also potentially misleading. See, e.g., Donald A. Berry & Sey-
mour Geisser, Inference in Cases of Disputed Paternity, in STATISTICS AND THE LAW 353, 376 (Morris
H. DeGroot et al. eds., 1986) (giving the example of using a six-digit paternity index when measurement
and sampling uncertainty render calculations to more than two digits “suspect™).

41.  For similar definitions of “validity,” see CARMINES & ZELLER, supra note 26, at 12; GHISELLI
ET AL., supra note 26, at 266; LOETHER & MCTAVISH, supra note 27, at 15, 34; Kaye & Freedman,
supra note 26, at 103-04. In forensic science, a forensic technique's validity depends upon the percent-
age of cases in which the analyst can make correct determinations. E. J. imwinkelried, A New Era in the
Evolution of Scientific Evidence—A Primer on Evaluating the Weight of Scientific Evidence, 23 WM. &
MARY L. REV. 261, 279 (1981). The term “valid” is sometimes applied by extension to the measurement
instrument used to gather the data, as well as to the data.

42.  See, e.g., Peters & Westgard, supra note 26, at 412 (“The term inaccuracy has been recom-
mended to emphasize lack of agreement [between results of the method being evaluated and the criterion
method] and is defined as the ‘numerical difference between the mean of a set of replicate measurements
and the true value.””(quoting J. Biittner et al., Provisional Recommendation on Quality Control in Clini-
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problem of validity. A person to whom red and orange objects appear indis-
tinguishable may over-count the number of “red” things in her visual field.
A criminal justice system that convicts defendants in part based on their
race, rather than merely on the strength of the evidence, 1s measuring the
race of the defendant, not merely guilt or innocence.

Lack of validity shows up not as random scatter in the data, but as some
degree of bias or systematic error. Sometimes comparing a data set against
an expected distribution produces evidence of invalidity. For example, if
measurements are expected to approximate a normal distribution, then
skewed results might suggest that some causal factor is at work producing
the biased results.** The notion of invalidity entails a comparison between
one measurement process and another measurement process that is thought
to provide a standard.* Bias relative to that standard constitutes evidence
that something is being measured other than what is intended or supposed.*’

Errors introduced at the level of measurements or individual observa-
tions can have significant effects on predictions, theories, and the direction
of later research, but they can be very difficult to correct once the data are
gathered. If the source of the bias can be determined, sometimes the meas-
urement process can be redesigned so that the distorting factors are elimi-
nated, or at least the degree of invalidity reduced. Even if the bias cannot be
eliminated or reduced, there might be a standard or criterion measure avail-
able for determining the degree of residual error. If the amount of bias is
known and stable, that information might be used to adjust the measurement
results. For example, if a watch faithfully “loses™ a minute each hour, a per-

cal Chemistry, 22 CLINICAL CHEMISTRY 532, 538 (1976) (emphasis omitted)). This is a narrow use of
the term “accuracy.” In its broader use, “accuracy” refers to the degree of comrespondence between any
descriptive proposition and the reality it purports to describe. In this broader sense, “inaccuracy” in-
cludes total error from all sources, not just from measurement invalidity.

Measurement accuracy can be further analyzed using the model of diagnostic tests, including
such concepts as forward and backward probabilities, and sensitivity and specificity. See infra notes 193-
209 and accompanying text.

43.  To undersiand fully the potential for error in measurement, one musi model the measurement
process as a causal process in which the outcome event is a good predictor of some aspect of the input
event. Color vision can be the basis for measurement or classification of visible objects only if our visual
experience validly measures some characteristic of visible objects. An understanding of why color vision
produces valid results, however, requires an understanding of how color vision works, employing at least
a rudimentary theory of cause-and-effect.

44.  Regulatory agencies sometimes officially establish “reference methods™” as criteria. See, e.g.,
Occupational Safety and Health Administration Regulations on Asbestos, 29 C.F.R. § 1910.1001 (2000);
Environmental Protection Agency Regulations on National Primary and Secondary Ambient Air Quality
Standards, 40 C.F.R. pt. 50 (2000); Environmental Protection Agency Regulations on Ambient Air
Quality Surveillance, 40 C.F.R. pt. 58 (2000).

45. A regulatory exanmiple involves the ambient air concentrations of sulfates. Certain glass filters
used in high-volume air samplers were believed to result in overestimation of true sulfate concentrations
in the measured air, and the EPA noted in an interstate air pollution proceeding that the petitioning states
had not corrected the sulfate data for artifact formation caused by the sampling technique. Environmental
Protection Agency, Interstate Pollution Abatement, 49 Fed. Reg. 34,851, 34,863 (Sept. 4, 1984) (Pro-
posed Determination), 49 Fed. Reg. 43,152, 48,153 {Dec. 10, 1984) (Final Determination). An example
from the behavioral sciences is the California F Scale, which may be interpreted as measuring two dif-
ferent properties at the same time: adherence to authoritarian beliefs and the trait of tending to agree with
assertions. CARMINES & ZELLER, supra nole 26, at 15.
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son can still use it to reach accurate conclusions by resetting it at a certain
time each day and allowing for the “lost” time since the last resetting.
Whether measurement results can be adjusted to offset a lack of validity
depends upon the nature of the measurement process and our knowledge of
the extent of the bias. The social sciences struggie with methods for testing
validity because criterion measurement methods are rare.*® For jury find-
ings, there is seldom an independent criterion or procedure by which to de-
termine accuracy, so it may not be possible to identify bias, or to adjust for
it if it occurs.

From the standpoint of producing warranted findings, reliability and va-
lidity pose different kinds of problems. They differ in the nature of the evi-
dence needed and in the means available to characterize the uncertainty.
The evidence of unreliability is primarily “internal” to a measurement proc-
ess and a data set. If reliability studies are conducted using a test-retest pro-
tocol, then the evidence of unreliability consists of inconsistent classifica-
tions exhibiting random variation. The evidence of invalidity, on the other
hand, is often “external” to the data set, and involves comparing data gath-
ered using two measurement processes for the same property or characteris-
tic. Theories of uncertainty are needed to warrant any finding that the two
measurement processes are measuring “‘the same thing.”

The question of whether degrees of reliability and validity are accept-
able requires a decision about whether these potentials for error should be
tolerated. Precision and accuracy can sometimes be improved, but usually at
a cost, and trade-offs are generally necessary. Scientists weigh the costs of
seeking additional precision or accuracy, and they routinely make pragmatic
decisions about whether to commit additional resources.”” Every scientific
study that is introduced into evidence resulted from pragmatic decisions
about how much precision and accuracy to tolerate in the study. Decisions
about acceptable reliability and validity are therefore inherently pragmatic;
someone must determine whether the data are “reliable enough” and “suffi-
ciently valid” for the purposes at hand. An institution conducting legal fact-
finding might leave such decisions to the factfinder, or share them with the
presiding judge as issues of law, or leave them by default with an expert
witness. The pragmatic nature of the decision should be a factor in allocat-
ing such decision-making power.

46.  On “construct validity” as an alternative to criterion validity in the social sciences, see
CARMINES & ZELLER, supra note 26, at 22-26; GHISELLI ET AL., supra note 26, at 282-87. On “content
validity” as another alternative, see CARMINES & ZELLER, supra note 26, at 20-22; and GHISELLI ET AL.,
supra note 26, at 275-77.

47.  Currie, supra note 26, at 199-209; Peters & Westgard, supra note 26, at 413-15; James O. West-
gard & George G. Klee, Quality Assurance, in TEXTBOOK OF CLINICAL CHEMISTRY 424 (Norbert W.
Tietz ed., 1986).
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B. Acceptable Sampling Uncertainty: Evaluating the
Population-Representativeness of Samples

Sampling uncertainty is the potential for error introduced precisely be-
cause the inference proceeds from sample statistics to conclusions about
population parameters.*® The population is the group that is the subject of
the generalized conclusion, while the sample is a subset of objects or events
selected from that population.* The sample provides the actual data used to
infer what measuring the entire population would show. Statisticians call a
summary number characterizing the population a “parameter,” while they
call a summary number characterizing a sample a “statistic.”* Therefore, an
inference from statistics (descriptive of sample data) to parameters (charac-
terizing a population) creates sampling uncertainty.

In general, the source of sampling uncertainty is the actual process of
selecting members of the sample, which can generate a sample that is
unrepresentative of the intended population. In short, the sampling process
can cause bias or systematic error in the sample when that sample is evalu-
ated from the standpoint of statistical representativeness to the target popu-
lation. Some causes of unrepresentative sampling are easy to detect. For
example, if for reasons of convenience researchers conduct a voting poll
only in the shopping malls of major cities, then the resulting sample may
not be representative of voters in rural areas or of less affluent voters. If a
study sample consists of patients in hospitals, then it may not be representa-
tive of people in the general population.’' Causal influences on sampling are
not always easy to detect, however, and methods are needed to minimize
them. This section of the Article discusses various scientific methods for
reducing sampling uncertainty and various analytic techniques for
characterizing the residual amount of sampling uncertainty.

Scientists approach the problem of representativeness of a sample to a
population in two ways. The first is to take explicitly into account any fac-
tors thought to be important in the target population. If certain factors are
known to be associated with the variables being studied, then the population
might be divided into sub-populations (“‘strata’”) on the basis of those fac-
tors. Random sampling within such strata will probably produce a more
representative sample than would sampling without stratification.’> For ex-
ample, if researchers know the demographics of the target population (such
as age groupings) and expect those demographic factors to correlate with
the variables being studied (such as the occurrence of a disease), then they

48.  NAT’L RESEARCH COUNCIL, supra note 25, at 165 (including random sampling error and non-
representativeness as species of “parameter uncertainty”).

49.  HAYS, supra note 34, at 204-06.

50.  Id; LOETHER & MCTAVISH, supra note 27, at 5.

51.  See, e.g., XYZ v. Schering Health Care Ltd., [2002] E-W.H.C. 1420 (QB), 2002 WL 1446183,
292 (July 29, 2002).

52.  See HAROLD A. KAHN & CHRISTOPHER T. SEMPOS, STATISTICAL METHODS IN EPIDEMIOLOGY
14-20 (1989); LOETHER & MCTAVISH, supra note 27, at 392-98.
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might ensure that the sample mirrors the population in the proportions of
those demographic factors. By creating sub-populations that are more ho-
mogeneous on a study variable than the total population is, the variability in
random samples from those sub-populations can be less than it would be in
a simple random sample drawn from the total population.” Even after draw-
ing the sample, known relevant factors may be taken into account by strati-
fying the data during the analysis. For example, if age is a known relevant
factor and age data are gathered on all the study subjects, then researchers
can analyze the data within age groups.®® One danger in this approach is that
after the sample is drawn and the data are stratified, some strata may contain
too few sample members for the desired statistical analysis.>’

Stratified random sampling also helps to address the problem of con-
founding factors.”® Confounding factors are variables that help explain ob-
served associations (or the lack of observed associations) and whose omis-
sion from the analysis injects a potential for error.”” When confounding fac-
tors are present and not controlled, they can bias a sample relative to its
population, and produce statistical associations in the sample that lead to
error if generalized to the population.® Controlled experiments address con-
founding factors by attempting to hold constant all causally relevant factors
except those being studied. Observational studies can sample, measure, and
statistically control any potential confounders.’® Therefore, to the extent that
causally relevant factors are known, stratified random sampling or stratified
data analysis can increase the likelihood that the conclusion drawn will be
acceptably accurate with respect to the target population.

The second scientific approach to the problem of sample representa-
tiveness is to build randomization into the sampling process.® A random

53. KAHN & SEMPOS, supra note 52, at 14-19; LOETHER & MCTAVISH, supra note 27, at 388, 393-
94. For a discussion of matching controls to cases in a case-control design, see ABRAHAM M.
LILIENFELD & DAVID E. LILIENFELD, FOUNDATIONS OF EPIDEMIOLOGY 347-52 (2d ed. 1980) (matching
controls to cases in order to reduce sampling bias and increase sampling precision).

The variability discovered in the measurements can also influence the uncertainty about such
central-tendency statistics as the mean. A National Research Council report gives the following example:
A group of 1000 workers observed in an epidemiologic study, for example, may have an av-
erage susceptibility to cancer significantly greater or less than the true mean of the entire
population, if by chance (or due to a systematic bias) the occupational group has slightly
more or slightly fewer outliers (particularly those of extremely high susceptibility) than the
overall population. In such cases, estimates of potency or population incidence drawn from

the worker study may be overly “conservative” (or insufficiently so).
NAT’L. RESEARCH COUNCIL, supra note 25, at 238.

54,  DAVID CLAYTON & MICHAEL HILLS, STATISTICAL MODELS IN EPIDEMIOLOGY 135, 141-52
(1993).

55, Id. at 135; LILIENFELD & LILIENFELD, supra note 53, at 348,

56.  See infra notes 164, 178 (discussing how a confounding variable is statistically associated with
one or more independent variables and with a dependent variable); Green et al., supra note 6, at 369;
Kaye & Freedman, supra note 26, at 92,

57.  See Green et al., supra note 6, at 369-70; Kaye & Freedman, supra note 26, at 138.

58.  Greenet al, supra note 6, at 370,

59.  See, e.g., Kaye & Freedman, supra note 26, ar 138-39.

60.  For informative introductions to sampling theory, see HAYS, supra note 34, at 53-34; LOETHER
& MCTAVISH, supra note 27, at 381-87; THOMAS H. WONNACOTT & RONALD J. WONNACOTT,
INTRODUCTORY STATISTICS 190-94 (5th ed. 1990); Finkelstein & Levin, supra note 34, at 256-81; Kaye

HeinOnline -- 56 Ala. L. Rev. 397 2004- 2005



398 Alabama Law Review [Vol. 56:2:381

sampling process is useful with respect to factors whose causal relevance is
unknown or uncertain.® For example, a sampling process is a “‘simple” ran-
dom procedure if on each selection of an individual to be a member of the
sample, every individual in the population has an equal chance of being
drawn.®’> After a researcher specifies a sample size (the number “N” of indi-
viduals in the sample) it is possible to compute probabilities for sample
types (a “sampling distribution”). If, for example, a simple random sample
of 1000 individuals (N = 1000”) is to be selected from a population in
which 40% would vote for Carter, there would be a probability of less than
0.01 that the sample would have fewer than 350 individuals (less than 35%)
voting for Carter.*’

Randomly drawing a sample can then support the following hypotheti-
cal reasoning about an unknown parameter in the population:

If the parameter equals X, then randomly selecting a sample of size
N with statistic S has a very low probability of occurrence. *

A sample of size N with statistic S was selected in a random manner
from the population.

Therefore, probably the parameter does not equal X.

The warrant for this inference rests on the hypothesis about the population
parameter, the random nature of the sampling method, the sample size, and
probability theory. Randomly drawing a sample that has little likelihood of
being drawn is itself good evidence that the population parameter does not
have the hypothesized value. If the population percentage of voters for
Carter were 40%, then it would be very unlikely that one would draw by
pure chance a sample of 1000 members with less than 35% voting for

& Freedman, supra note 26, at 115-33, 153-59.

61. LOETHER & MCTAVISH, supra note 27, at 394,

[Olne of the strengths of the simple random sample is that when one is ignorant of the rele-
vant variables other than the independent and dependent variables, one can execute a simple
random sample with some confidence that the unknown but relevant variables will be sam-
pled in approximately the proportions in which they occur in the total population.

Id.

62.  On this meaning of simple random sampling, see HAYS, supra note 34, at 53-54; LOETHER &
MCTAVISH, supra note 27, at 381-82.

63.  The supporting calculation is as follows. With simple random sampling, the expected value or
mean for the sampling distribution of the proportion is 0.4, and the standard error is approximately
0.015. With a simple random sample of this size and such a hypothetical parameter, the sampling distri-
bution for the percentage closely approximates a normal distribution. See HAMBURG, supra note 35, at
185-94; HAYS, supra note 34, at 128-48, 177-79, 189-90; LOETHER & MCTAVISH, supra note 27, at 417-
27. In the example in the text, the form of a two-tailed sampling distribution is approximately normal,
and less than 1% of samples are expected to fall outside 2.58 standard errors on either side of the mean.
Therefore, the probability of randomly selecting a sample with less than 35% voters for Carter is less
than 0.01.

64. This Article adopts a “classical” approach to sampling theory, which means that probabilities
have the relative-frequency interpretation that is familiar from gambling. See, e¢.g., WONNACOTT &
WONNACOTT, supra note 60, at 70-101; Kaye & Freedman, supra note 26, at 117 n.112.
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Carter. Drawing a sample with a very low probability is therefore good
grounds for rejecting the hypothesis.

Such calculations of sample probability can then lead to decision rules
or inference rules about hypothesis rejection. Scientists typically consider
acceptable evidence for rejecting an hypothesis to be drawing one of the 5%
least likely samples—one out of the set of samples that has an aggregate
probability less than 0.05.® Randomly drawing one of these 5% least likely
samples is so improbable an event that doing so is called “statistically sig-
nificant,”®® and warrants rejecting the hypothesis as probably false.”” Of
course, the hypothesis might still e correct, and it is said to be a “Type I
error” to reject a true hypothesis.®

Scientists also report the statistical significance of sampling results in
terms of “p-values,” which is short for “probability values.” The p-value
for a statistic is the probability of drawing that statistic value or a more ex-
treme value, given the hypothesis. Thus, instead of saying “the sample per-
centage of 35% was statistically significant at the 0.05 level,” a scientist
might report the same information in terms of a p-value: “the sample per-
centage was 35% (p < 0.05).” The parenthetical “(p < 0.05)” asserts the
proposition that the p-value for this sample result is less than 0.05. The con-
ventional decision rule is therefore to reject the hypothesis if sample results
have a p-value less than 0.05. Using this 0.05 probability convention as the
basis for rejecting hypotheses, however, means that Type I errors may occur
in about 5% of sampling cases. P-values state probabilities for drawing sam-
ples of certain types, not probabilities about the truth or falsehood of the
hypothesis.”” But drawing a sample result that has a low p-value furnishes

65. MARTIN BLAND, AN INTRODUCTION TO MEDICAL STATISTICS 152 (1987) (medical sciences);
COHEN & COHEN, supra note 31, at 20-21 (behavioral sciences); LOETHER & MCTAVISH, supra note 27,
at 484 (sociology); Michael Cowles & Caroline Davis, On the Origins of the .05 Level of Statistical
Significance, 37 AM. PSYCHOLOGIST 553, 533 (1982); James H. Ware et al., P Values, in MEDICAL USES
OF STATISTICS 181, 185-88 (John C. Bailar IIT & Frederick Mosteller eds., 2d ed. 1992) (medical litera-
ture).

66.  BLAND, supra note 65, at 148-62; HAYS, supra note 34, at 270-84; LOETHER & MCTAVISH,
supra note 27, at 480-93.

67.  Courts have adopted similar statistical reasoning to determine whether a plaintiff has presented a
prima facie case of unlawful discrimination. See, e.g., Wards Cove Packing Co. v. Atonio, 490 U.S. 642,
650-55 (1989); Hazelwood Sch. Dist. v. United States, 433 U.S. 299, 307-13 (1977); Castaneda v. Par-
tida, 430 U.S. 482, 492-99 (1977); Palmer v. Shultz, 815 F.2d 84, 90-97 (D.C. Cir. 1987).

68. HAYS, supra note 34, at 282; LOETHER & MCTAVISH, supra note 27, at 489-90; WONNACOTT &
WONNACOTT, supra note 60, at 302-03.

69.  On p-values, see WONNACOTT & WONNACOTT, supra note 60, at 293-301; Kaye & Freedman,
supra note 26, at 121-23; and Ware et al., supra note 65, at 181. Wonnacott and Wonnacott describe the
p-value for a sample result relative to the null hypothesis as a measure of the “credibility” of the null
hypothesis, and if “this credibility falls below” the selected level of significance, then the null hypothesis
can be rejected. Jd. at 301. With this in mind, the “p-value is the lowest that we could push the level o
[the level of significance] and still be able (barely) to reject H, [the null hypothesis].” WONNACOTT &
WONNACOTT, supra note 60, at 301 n.7.

70.  In classical sampling theory, it is 2 mistake to think that the p-value is the probability that the
hypothesis is true. As Kaye and Freedman note: “The significance level tells us what is likely to happen
when the null hypothesis is correct; it cannot tell us the probability that the hypothesis is true.” Kaye &
Freedman, supra note 26, at 125. Qr as they say in another place: some statements in cases “confuse the
probability of the kind of outcome observed, which is computed under some model of chance, with the
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evidence that mere chance due to the sampling probably does not explain
the difference between the expected result based on the hypothesis and the
actual result obtained.”"

Using the set of the 5% least likely samples to reject hypotheses is a
convention among scientists, involving a potential for random sampling
error that is deemed acceptable for purposes of scientific research.”” Like
many conventions, the threshold of acceptable uncertainty could be drawn
somewhat higher or lower, and within a rough range one could plausibly
draw any line for rejecting and not rejecting the hypothesis.” When prob-
abilities are interpreted as relative frequencies, then the convention on the
level of significance for rejecting hypotheses also implicitly accepts a long-
run error rate for such rejections.”® If a large number of samples were drawn
from a population in which the hypothesis is true, then for a 0.05 level of
significance one expects to draw statistically significant results about 5% of
the time.” Hypothetical reasoning from the population to the probability of

probability that chance is the explanation for the outcome.” Id. at 122 n.132. Because this Article adopts
classical thinking about probability, p-values are probabilities assigned to samples, not to the hypothesis
itself. Moreover, it is important to distinguish between assertions assigning a mathematical probability to
a sample and an inference rule that warrants rejecting hypotheses as “improbable” on the basis of p-
values for actual data. These different uses of the term “probable” invite the very confusion against
which Kaye and Freedman wam. /d.

71.  See Environmental Protection Agency, Guidelines for Carcinogen Risk Assessment, 51 Fed.
Reg. 33,992, 33,697 (Sept. 11, 1986). As Kaye and Freedman have stated, “significant differences are
evidence that scmething besides random error is at work, but they are not evidence that this ‘something’
is legally or practically important.” Kaye & Freedman, supra note 26, at 124,

72.  See CARL F. CRANOR, REGULATING TOXIC SUBSTANCES: A PHILOSOPHY OF SCIENCE AND THE
LAaw 26-48 (1993); HAYS, supra note 34, at 267-82, 302-03 (“[Clonventions about significant results
should not be turned into canons of good scientific practice™); Neil B. Cohen, Confidence in Probability:
Burdens of Persuasion in a World of Imperfect Knowledge, 60 N.Y.U. L. REv. 385, 409-17 (1985);
Cowles & Davis, supra note 65, at 553 (derailing the history behind the convention, and suggesting that
the choice was related to the earlier concept of “probable error”); Michael O. Finkelstein, The Applica-
tion of Statistical Decision Theory to the Jury Discrimination Cases, 80 HARV. L. REV. 338, 364 (1966);
Michael D. Green, Expert Witnesses and Sufficiency of Evidence in Toxic Substances Litigation: The
Legacy of Agent Orange and Bendectin Litigation, 86 NW. U. L. REV. 643, 683-84 (1992) (“[T]he choice
of .05 is an arbitrary one,” and “[u]ltimately, the relative costs and bencfits of the types of errors must be
compared to decide the appropriate level of statistical significance™); Donald N. McCloskey, The Loss
Funcrion Has Been Mislaid: The Rhetoric of Significance Tests, 75 AM. ECON. REv. 201, 201 (1985),
available at http://links.jstor.org/sici 7sici=0002-8282%28198505%2975%3A2%3C201%3ATLFHBM%
3E2.0.C0%3B2-9 (“Roughly three-quarters of the contributors to the American Economic Review mis-
use the test of significance.”); Jeffrey H. Silber & Herbert Kaiser, Loss Weighting and the Human Cost
of Experimeniation, 38 J. CHRONIC DISEASES 507 (1985) (arguing that the choice of the level of statisti-
cal significance in medical clinical studies is a function of implicit decisions concerning the relative
importance of future versus present patients); Ware et al., supra note 63, at 186 (the popular scientific
convention has a disadvantage of suggesting “a rather mindless cut-off point, which has nothing to do
with the importance of the decision to be made or with the costs and losses associated with the out-
comes™). On the importance of considering practical consequences in selecting a level of significance,
see CRANOR, supra note 72, at 31-48; HAYS, supra note 34, at 283-84; and LOETHER & MCTAVISH,
supra note 27, at 499-501.

73.  In some areas or applications, scientists use other probabilities to define a “very low probabil-
ity,” such as 0.01 (the 1% least likely samples). See, e.g., Kaye & Freedman, supra note 26, at 124;
HAYS, supra note 34, at 283-84; LOETHER & MCTAVISH, supra note 27, at 484,

74.  Om error rates and the two types of errors, see HAYS, supra note 34, at 279-84; FINKELSTEIN &
LEVIN, supra note 34, at 120-22; and LOETHER & MCTAVISH, supra note 27, at 479-93,

75.  See LOETHER & MCTAVISH, supra note 27, at 489-90.
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samples, therefore, raises the question of what error rate is acceptable for
rejecting hypotheses. A decision is needed concerning what degree of un-
certainty is acceptable in risking a Type I error.

Hypothetical reasoning is also used in another facet of sampling uncer-
tainty. A scientist is concerned not only with the probability of wrongly
rejecting a true hypothesis (making a Type I error), but also with the prob-
ability of correctly rejecting a false hypothesis. The “statistical power” of a
sampling procedure is the probability of correctly concluding that a false
hypothesis is in fact probably false.”® It is the probability of drawing a statis-
tically significant result (leading to rejection of the hypothesis), or a sample
with a p-value more extreme than the chosen level of significance. Statisti-
cal power is the answer to the question: “How probable is it that a statisti-
cally significant result will be drawn if the hypothesis being tested is not
correct?”’ This probability obviously depends upon what the true value is.
For example, if the true value is exactly the critical value needed to reject
the hypothesis, and any sample drawn is as likely as not to be statistically
significant (that is, fall above or below that critical value), then the statisti-
cal power of the study would be 0.5 or 50%. In such a case, the power
would increase as the difference between the hypothesis and the true value
increases, and a hypothesis that is “way off” the true value is more likely to
be rejected than one that is “close.””’

Statistical power is therefore a function of the hypothesis chosen, the
critical value of the sample statistic for rejecting that hypothesis, the true
value in the population, and the probability distribution for the statistic
based on the true value.” In a specific study, the researcher determines the
hypothesis value and calculates the critical value for rejecting it, given a
level of significance (for example, 0.05). Both the critical value and the
probability distribution based on the true value depend upon the sample size
N, with power increasing as N increases. The third factor, however, the true
population value, is unknown. The power for a study is therefore a set of
probability distributions based on a range of possible true values.

76.  For treatments of statistical power, see BLAND, supra note 65, at 159-60; CLAYTON & HILLS,
supra note 54, at 206-09; COHEN & COHEN, supra note 31, at 59-61, 162, 166 & app. G.2; HAYS, supra
note 34, at 284-93, 328-34; FINKELSTEIN & LEVIN, supra note 34, at 82-87, 509-510; STEVE SELVIN,
STATISTICAL ANALYSIS OF EPIDEMIOLOGIC DATA 71-89 (1991); Rebecca DerSimonian et al., Reporting
on Methods in Clinical Trials, in MEDICAL USES OF STATISTICS 333, 343 (John C. Bailar IIT & Frederick
Mosteller eds., 2d ed.1992); Jennie A. Freiman et al., The Importance of Beta, the Type Il Error, and
Sample Size in the Design and Interpretation of the Randomized Controlled Trial: Survey of Two Sets of
“Negative” Trials, in MEDICAL USES OF STATISTICS 357, 358-64 (John C. Bailar IIl & Frederick
Mosteller eds., 2d ed. 1992); Kaye & Freedman, supra note 26, at 125-26; and Ware et al., supra note
65, at 195-96.

77.  The power of a sampling protocol can be compared to the notion of detection. Power is the
probability of detecting a difference between the hypothetical value and the true valve, which is of
course unknown. See SELVIN, supra note 76, at 71; Freiman et al., supra note 76, at 359-60. As stated by
Hays, power is “not unlike the power of a microscope. Power reflects the ability of a decision rule 10
detect from evidence that the true situation differs from a hypothetical one.” HAYS, supra note 34, at
287-89.

78.  COHEN & COHEN, supra note 31, at 59; HAYS, supra note 34, at 284-93; SELVIN, supra note 76,
at 72-73; Freiman et al., supra note 76, at 359-62.
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As long as the true value remains unknown, and so the real statistical
power of the study remains unknown, of what use is a power determination
to legal factfinding? One answer is that the power of the study can influence
how a factfinder should interpret the study results.” For example, in the
early 1980s there was a dispute over whether the Environmental Protection
Agency should find that there was “a reasonable basis to conclude” that
formaldehyde presents a significant risk of serious or widespread harm to
humans from cancer.® Part of the dispute involved an epidemiologic mor-
tality study that did not show a statistically significant increase of risk of
dying from cancer among exposed workers compared to unexposed work-
ers.”’ From the standpoint of statistical power, however, the study had only
a 4% chance of rejecting the “null” hypothesis that there was no increase in
risk for cancer of the pharynx or of the larynx (assuming a 0.05 level of
significance), even if there had been in reality a two-fold increase in risk for
those exposed. Mayo reports that to have “a fairly high probability (.8)” of
obtaining a statistically significant difference in those types of cancer in this
study, the actual increase in risk would have to have been on the order of
forty or fifty times.® The absence of statistically significant results in such a
study cannot warrant a finding that there was no increased risk to exposed
workers. Low statistical power to detect even a substantial increased risk is
evidence that the sample involved is too small to warrant a finding that such
a risk increase is unlikely. Lack of power cautions a reasonable factfinder
against drawing inferences of no general causation.

As discussed above, a Type-I error is the error of getting a “false-
positive” sampling result—that is, of Obtaining statistically significant re-
sults by pure chance and wrongly rejecting a correct hypothesis. A “false-
negative” error (or “Type-II error”) consists of failing to reject a false hy-
pothesis.® Statistical power is the probability that a sampling procedure will
generate a sample with statistically significant results, leading to a correct
rejection of the false hypothesis, and therefore causing researchers to avoid
a Type-II error. Therefore, when a study reports results that are not statisti-
cally significant, the higher its power for “detecting” a population parameter

79. See Freiman et al., supra note 76, at 361-62; Ware et al., supra note 65, at 195. Scientists use
power determinations prior to undertaking a study in order to decide whether to undertake it at all or in
order to determine the size of the sample to draw. CLAYTON & HILLS, supra note 54, at 209; COHEN &
COHEN, supra note 31, at 60-61 & app. G.2; Ware et al., supra note 63, at 195-96.

80.  This case study is presented in Deborah G. Mayo, Sociological Versus Metascientific Views of
Risk Assessment, in ACCEPTABLE EVIDENCE: SCIENCE AND VALUES IN RISK MANAGEMENT 247, 261-75
(Deborah G. Mayo & Rachelle D. Hollander eds., 1991).

8l. Seeid. at 272,

82. Id. at273.

83.  CoOHEN & COHEN, supra note 31, at 166; CRANOR, supra nate 72, at 32; FINKELSTEIN & LEVIN,
supra note 34, at 81-88, 120-22; HAYS, supra note 34, at 282; Cohen, supra note 72, at 410-17; William
E. Feinberg, Teaching the Type I and Type Il Errors: The Judicial Process, 25 AM. STATISTICIAN 30
(1971), available at http://links.jstor.org/sici7sici=0003-1305%28197106%2925%3A3%3C30%3ATTTI
AT%3E2.0.C0%3B2-Z; Freiman et al., supra note 76, at 359. The probability of making a Type 1I error
is often designated as B, and the probability of avoiding a Type II error (statistical power) as 1-B. On
inconsistency of notation, see Kaye & Freedman, supra note 26, at 125 n.144.
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of X, the more likely it is that the study would have produced statistically
significant results if X were in fact true. If the study had a low power to “de-
tect” X and reject the hypothesis, then it is not surprising that the study
failed to produce statistically significant results.

Unlike the scientific conventions for acceptable rates of Type I error,
the decision rules for when the power of a study is acceptable are not as
widely agreed among scientists. “Fairly high” power for clinical studies in
the medical area is on the order of 0.95, and 0.9 is the usually accepted
standard for clinical trials.* That is, for any true parameter value that is
likely to have clinical significance, the probability of obtaining statistically
significant results relative to the null hypothesis should be in the range of
0.9 to 0.95. Medical researchers want a high probability of positive results
(statistically significant results) if the true value in the population is medi-
cally important. On the other hand, behavioral scientists are often forced to
accept less power for their studies, which might be considered acceptable in
the 0.7 to 0.9 range, with 0.8 often being accepted as adequate power.?

Scientists often provide “confidence intervals” as a convenient means of
characterizing a number of the aspects of random sampling uncertainty. A
confidence interval is constructed around a central value, which is usually
the “maximum-likelihood estimate” (MLE) for the parameter. The MLE is
the population value that maximizes the likelihood or probability of obtain-
ing the actual sample, or the parameter value that makes the statistical re-
sults have the highest probability of occurrence.®® Intuitively, the MLE is
the “best bet” for the true parameter value because it is the value that, if it is
true, would make the obtained sample results have the highest probability of
being drawn.”” A sampling distribution for the statistic is then constructed
around the MLE value, instead of around an arbitrarily chosen hypothesis or
around the null hypothesis. Moreover, just as significance testing requires
selecting a level of statistical significance for rejecting an hypothesis, con-
structing confidence intervals requires selecting a degree of confidence in
order to calculate the boundary limits for the interval. A 95% confidence
interval is constructed using methods similar to those used in significance
testing at the 0.05 level.®

Confidence intervals efficiently provide information about the potential
for Type I errors. A confidence interval divides all possible parameter val-

84.  See BLAND, supra note 65, at 161; Freiman et al., supra note 76, at 369.

85. CoHEN & COHEN, supra note 31, at 162.

86.  The “maximum-likelihood estimate” is the parameter value that “makes the occurrence of the
actual result have greatest a priori likelihood.” HAYS, supra note 34, at 211. It is “the hypothetical
population value that maximizes the likelihood of the observed sample.” WONNACOTT & WONNACOTT,
supra note 60, at 568.

87. See generally HAYS, supra note 34, at 208-11; WONNACOTT & WONNACOTT, supra note 60, at
564-81.

88.  The upper and lower boundaries or “limits” of the 95% confidence interval leave outside the
interval the 5% least likely samples. On calculating confidence intervals for proportions, see HAYS,
supra note 34, at 258-60, LOETHER & MCTAVISH, supra note 27, at 452-58; and WONNACOTT &
WONNACOTT, supra note 60, at 273-74.
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ues into two categories. As a close approximation, the sample results are
statistically significant at the 0.05 level for all parameter values lying out-
side the 95% confidence interval.”’ The values lying inside the confidence
interval, however, cannot be rejected at the 0.05 level on the basis of the
sample.90 For most practical purposes, therefore, a confidence interval can
be used to characterize the statistical significance of the sample results for
all possible parameter values.

With respect to avoiding Type I errors, a confidence interval also pro-
vides some information about the power of the sample. A very wide confi-
dence interval suggests a small sample size and correspondingly low
power.”! With everything else equal, increasing sample size will increase
statistical power and decrease the width of the confidence interval.”® The
width of the confidence interval provides some indication of the magnitude
of difference the study is capable of detecting and, therefore, of the power to
detect that the true value is not equal to the null hypothesis.”

Sampling uncertainty (the potential for error due to sampling) therefore
has several aspects. A major potential for error is due to causal factors that
influence the sampling process and cause it to produce samples that are bi-
ased in relation to the target population. Although strictly implemented sam-
pling protocols can reduce this uncertainty, the factfinder should decide
whether the risk of bias due to the sample-selection process is acceptable.
Even if known biasing factors are controlled and randomization is built into
the sampling protocol, there is still sampling uncertainty due to chance
alone. The amount of random uncertainty in a study or sample can be di-
vided into the complementary risks of using statistically significant results
to reject a true hypothesis (a Type-I error) or relying on a lack of statisti-
cally significant results in not rejecting a false hypothesis (a Type-1l error).
Before relying on even a scientifically drawn random sample, the factfinder
should decide whether the risk of either type of random sampling error is
acceptable.

Thus, even when scientists have a sound basis for calculating statistical
significance and statistical power, this does not eliminate the need to decide
whether the residual sampling uncertainty is acceptable. Whether in the
form of systematic bias or in the form of random difference, the risk re-

89.  COHEN & COHEN, supra note 31, at 63; HAYS, supra note 34, at 221-24, 254-58; WONNACOTT
& WONNACOTT, supra note 60, at 288-92. For a properly constructed 95% confidence interval, the
probability is at least 0.95 that the interval actually covers the true population value. Over all possible
samples of the same size, about 95% of these confidence intervals will include the true population value.
If one of those samples is selected at random, the probability is 0.95 that its 93% confidence interval
covers the true value. See LOETHER & MCTAVISH, supra note 27, at 455-56; WONNACOTT &
WONNACOTT, supra note 60, at 254-59.

90. E.g., WONNACOTT & WONNACOTT, supra note 60, at 288-318,

91.  See LOETHER & MCTAVISH, supra note 27, at S03; SELVIN, supra note 76, at 177.

92. See, e.g., HAYS, supra note 34, at 256-60.

93.  See LOETHER & MCTAVISH, supra note 27, at 503. Constructing a confidence interval does not
create better evidence of the true parameter. The empirical evidence still consists simply of the actual
sample results, and any of these methodologies for characterizing sampling uncertainty is a way of
presenting that evidence.
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mains that the sample drawn is not representative of the target population.
One danger with using scientific terminology and calculating mathematical
probabilities is being misled into thinking that doing so eliminates decisions
about accepting uncertainties.® Mathematical probabilities do not change
the sampling evidence or change the fact that it is (merely) sampling evi-
dence. Mathematical probabilities characterize the decision options in quan-
titative terms, but they do not eliminate the necessity for making those deci-
sions or turn those pragmatic decisions into scientific issues of fact.

C. Acceptable Modeling Uncertainty: Evaluating
the Predictive Value of Variables

The analysis in the two previous sections applies even to generalizations
from data taken on single variables and, therefore, to findings involving
only single variables. But, the major premise of a direct inference to specific
causation states a causal relationship between two variables, A and B. The
warrant for that premise 1s usually a statistical assoctation between A and B,
which warrants using information on the variable defining the reference
group (A) to predict outcomes on another variable that identifies a subgroup
(B). Scientists often develop models that express the values or statistics of
variable B as a mathematical function of the values or statistics of variable
A. Such models can help warrant predictions about one variable on the basis
of information about the others.”> Modeling uncertainty is the potential for
error created by selecting a particular model.

Everyday life, science, and tort law are all concerned with determining
risk. The public may be concerned with the risk of harm in commercial air
travel, the risk of disease from exposure to chemicals in food or the envi-
ronment, or the increased health risks for people who have identifiable ge-
netic factors. The factfinder in a tort case often determines the existence and
magnitude of such risks. Risk is in part a function of the expected rate of
occurrence (incidence) of a harm in a group of individuals, such as the ex-
pected percentage of new injuries within some period of time or out of some

94,  The technical terminology can also obscure the fact that only random sampling uncertainty is
being characterized, not other types of uncertainty. See, e.g., Green, supra note 72, at 667-68, 681 (criti-
cizing a court decision as “flat wrong in its notion that statistical significance or confidence intervals
reflect anything about possible sources of error in an epidemiologic study other than sampling error™).
95.  The traditional use of regression analysis in the behavioral sciences was for making predictions,
with only incidental attention to explanation or causal analysis. See COHEN & COHEN, supra note 31, at
41. Selvin describes two principal uses of mathematical models, contrasting two “types of mathematical
structures” and referring to both as “models™:
Both employ mathematical expressions to describe relationships within a set of data but with
different goals. One attempts to reflect biological or physical reality, whereas the other is es-
sentially a mathematical convenience to make predictions or to represent a set of relation-
ships in a parsimonious way. . . . Models used in most statistical analyses are carefully con-
structed to reflect the observed dara, providing a mathematically convenient way to deal with
complex issues without detailed knowledge of underlying mechanisms.

SELVIN, supra note 76, at 37.
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number of exposed people.”® A standard study design for scientific investi-
gations into risk is the controlled experimental study, which can furnish
evidence that one variable is a risk factor for another variable.”” These vari-
ables might be either categorical or quantitative. Examples of categorical
variables are ingesting or not ingesting a specified drug, and developing or
not developing a particular disease. Examples of quantitative variables are
level of exposure and kidney dysfunction as measured by increased excre-
tion of a protein in the urine.”® In a controlled study, a sufficiently large
number of relatively homogeneous subjects are randomly assigned to the
test and control groups, and they are carefully monitored so that all likely
causal factors are controlled physically.” If over the course of the study
there is a statistically significant difference in disease incidence between the
test and control groups, then the study provides some evidence that the ex-
posure being tested is a risk factor for the disease.

Such a controlled experimental design may furnish a paradigm for how
to conduct a study about risk, but scientists cannot always perform such
studies. A controlied study may not be methodologically feasible, as when
the subjects’ behavior must be studied in natural circumstances, not in the
laboratory. It may not be economically feasible if a large, long-term labora-
tory study is needed to study a rare disease, and it may not be ethically ac-

96. In epidemiologic terminclogy, “incidence” is the number of new cases of a disease occurring in
some group during a specified period of time, while “prevalence” is the number of cases present in the
group at a specified time. See, e.g., LILIENFELD & LILIENFELD, supra note 53, at 139. Those authors state
that the “incidence rate is a direct estimate of the probability, or risk, of developing a disease during a
specified period of time.” /4. A broader conception of “risk” would include not only expected incidence,
but all of the epistemic uncertainty associated with expected incidence. For a discussion of the evaluative
judgments involved in risk assessment that are not acknowledged in the standard definition of “risk,” see
K.S. SHRADER-FRECHETTE, RISK AND RATIONAUITY: PHILOSOPHICAL FOUNDATIONS FOR POPULIST
REFORMS 58-63 (1991). On the need to re-conceive risk characterization as more than the summary of a
technical process, see NAT'L RESEARCH COUNCIL, UNDERSTANDING RISK: INFORMING DECISIONS IN A
DEMOCRATIC SOCIETY (Paul C. Stern & Harvey V. Fineberg eds., 1996).

97. A risk factor is a variable whose values or categories are statistically associated with an in-
creased incidence of disease or injury in a population. The eticlogic or causal agent for the disease or
injury may be unknown. See, e.g., LILIENFELD & LILIENFELD, supra note 53, at 259. What is known is
that having a certain score on the variable warrants a prediction thal the occurrence of the disease or
injury is more likely, An assertion that a variable is a risk factor usually also suggests that there exisis
some causal connection between the risk factor and the dependent variable, even if the precise causal
relationship is unknown. See id.

98.  For example, worker exposure to cadmium might be measured by the amount of cadmium in the
workers’ blood or urine, or by linking job histories with air measurements of cadmium in various work
departments over time. Kidney dysfunction in workers might be measured by the concentrations of B-2-
microglobulin in their urine. See Michael Thun, Kidney Dysfunction in Cadmium Workers, in CASE
STUDIES IN OCCUPATIONAL EPIDEMIOLOGY 105-26 (Kyle Steenland ed., 1993).

99.  For a discussion of a controlled study design for toxicological investigations, especially using
laboratory test animals, see Norton Nelson, Toxicology and Epidemiology: Strengths and Limitations, in
EPIDEMIOLOGY AND HEALTH RISK ASSESSMENT 37 (Leon Gordis ed., 1988). For discussions of con-
wolled study designs in clinical trials involving human subjects, sce BLAND, supra note 65, at 6-25;
CHARLES H. HENNEKENS & JULIE E. BURING, EPIDEMIOLOGY IN MEDICINE 178-212 (1987); LILIENFELD
& LILIENFELD, supra note 53, at 256-72; Philip W. Lavori et al., Designs for Experiments—FParaliel
Comparisons of Treatment, in MEDICAL USES OF STATISTICS 61-82 (John C. Bailar Il & Frederick
Mosteller eds., 2d ed. 1992); and Lincoln E. Moses, Statistical Concepts Fundamenial to Investigations,
in MEDICAL USES OF STATISTICS 5-25 (John C. Bailar Il & Frederick Mosteller eds., 2d ed. 1992).
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ceptable if it requires experimentation on healthy human beings. Although
health care researchers can sometimes approximate such a controlled proto-
col in a clinical study on medical patients, they often must resort to epide-
miologic studies. An epidemiologic study draws its data from observations
of human beings in natural and uncontrolled settings.'® In lieu of a test
group and a control group, an epidemiologic or observational study will
identify a study group and a comparison group, based on differences in ex-
posure,m' However, it is not possible to assign subjects randomly to ex-
posed or unexposed groups, or to ensure that such independent variables as
genetics, diet, and environment are physically controlled and uniform for all
subjects. At best, researchers must identify potentially relevant variables,
take measurements on those variables for each subject, and search for statis-
tical relationships among those variables. If such statistical relationships can
be generalized from the study sample to the population, then they might
warrant predictions for some variables based on other variables, provided
the factfinder can take the inherent uncertainties into account.

The kinds of causal chains of importance in tort law often involve many
variables (such as genetic, developmental, and environmental factors) that
interact in complicated ways. A study design might exclude from the sam-
ple types of individuals who have complicating factors (such as certain dis-
eases or genetic histories). A stratified random sampling protocol can ensure
that the stratification variables are proportionally reflected in the sample.'®
Researchers might physically control certain variables (such as diet or envi-
ronmental conditions), ensuring that these variables have identical values
for both test and control groups. To the extent, however, that such direct
techniques are unavailable, researchers can “statistically control” relevant
variables by gathering data upon them and using models to take them into
account when calculating risk.'” _Ihe-potential for predictive error that is
due to leaving important variables out of account in modeling is a first ma-
jor source of modeling uncertainty.

For models to be useful, statistics must characterize the strength of as-
sociation and predictive power between studied variables in a way that sup-
ports causal interpretations. Relative risk (RR) is one statistic used to char-
acterize the statistical association between two variables. Relative risk is
useful when the predictor variable (such as exposure) and the injury variable
are categorical variables. A general format for characterizing relative risk is
a “2 x 2 table,” as in Table 1. The values in the cells of this table (namely,
w, x, y, and z) are the frequencies or numbers of individuals in the study
who satisfy that combination of classification categories. For example, w is
the number of individuals who are in the study group (for example, people
exposed to an environmental agent) and who suffer the relevant injury dur-

100.  LILIENFELD & LILIENFELD, supra note 53, at 4.
101, Seeid. at 191-253.

102.  See supra text accompanying notes 52-59.

103.  E.g., KAHN & SEMPOS, supra note 52, at 85-113.
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ing the study period. The value y is the number of individuals in the com-
parison group (unexposed) who suffer the injury. The values in the other
two cells of the table reflect similar calculations. The table therefore dis-
plays a frequency distribution over the combinations of categories for the
two categorical variables.'® The frequency statistics in this table can be
used to calculate the incidence of the injury in the study group, w / (w + x),

and in the comparison group, y / (y + z). These rates are obviously affected
fos

by any measurement errors in classifying individuals in the study — and by
the sample of individuals in the study.
TABLE 1
Injury or Dependent Variable:
Yes No Totals:

Predictor or Independent
Variable, used to identify:

Study Group (Exposed): w X wW+X

Comparison Group (Unexposed): y z y+z

Totals: Wty X+z WHX+Y+Z

The relative risk is the ratio of the injury incidence in the study group
(exposed group) to the injury incidence in the comparison group (unexposed
group):")6

104.  Epidemiologists usuaily list the exposure or independent variable down the left (vertical) side of
the table and the disease or injury variable across the top (horizontally). See, e.g., KAHN & SEMPOS,
supra note 52, at 45-50; SELVIN, supra note 76, at 345. On the other hand, the table can be set up with
the dependent variable down the left side and the independent variable across the top. See, e.g., LOETHER
& MCTAVISH, supra note 27, at 165-76 (the tradition in sociology is to use a dependent variable as a row
variable, down the stub or side of the table).

105. Measurement validity for dependent or independent variables might be adversely affected by the
knowledge of those taking the measurements about whether particular study subjects are in the experi-
mental group or the control group. When such measurement bias is a possibility, standard protocols
include single-blind studies (the primary observer cannot tell whether the subjects are in the experimen-
tal group or the control group) and double-blind studies (both subjects and observing researchers do not
know the subject’s group membership). See, e.g., BLAND, supra note 65, at 20-22; LILIENFELD &
LILIENFELD, supra note 53, at 265; SELVIN, supra note 76, at 49; DerSimonian et al., supra note 76, at
342-44.

106.  For definitions of relative risk, see Green et al., supra note 6, at 348-49; KAHN & SEMPOS, supra
note 52, at 45-47; and LILIENFELD & LILIENFELD, supra note 53, at 209-16.
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w/(w+x)

y/(y+2z)

For example, in a study about the risks due to exposure to a particular
chemical, relative risk would compare the rate of injury among those ex-
posed with the rate among those not exposed.'” If exposure to the chemical
is not associated in the study with an increased incidence of injury (that is, if
the incidences in the two groups are identical), then the relative risk is equal
to one. There is no statistical association between the predictor and injury
variables in the study sample. If a higher incidence of injury is observed in
the study group than in the comparison group, the relative risk is greater
than one. For example, a doubling of incidence in the exposure group would
result in a relative risk of two. A lower incidence of injury would be re-
flected in a relative risk less than one.

Relative risk in a sample can be used to make predictions about associa-
tion in the relevant population, provided sampling uncertainty is taken into
account. The null hypothesis is that there would be no statistical association
in the population if every individual could be measured on the two vari-
ables. That is, the null hypothesis is that RR in the population would have a
value of one. Even if a population does have RR = I, samples selected on
the basis of chance alone could still exhibit relative risks not equal to one. In
order to allow for sampling uncertainty, researchers conduct significance
testing for RR using the same principles discussed in the previous section. It
might be very unlikely that the RR actually observed in the sample would be
drawn randomly from a population with a RR = . If the sampling is con-
ducted in a suitably random manner, statisticians can identify a sampling

107.  An alternative statistic used to characterize the degree of association is the odds ratio, defined
using the notation of Table | as (w/x)/y/z), or the mathematically equivalent cross-product form wz/xy.
See, e.g., FINKELSTEIN & LEVIN, supra note 34, at 37-38; KAHN & SEMPOS, supra note 52, at 51-54;
Leon Gordis, Estimating Risk and Inferring Causality in Epidemiology, in EPIDEMIOLOGY AND HEALTH
RISK ASSESSMENT 51, 51-52 (Leon Gordis ed., 1988). As a general principle, if the incidence rate of
injury is relatively small (w is small relative to x, and y relative (o z), then the odds ratio will closely
approximate the relative risk. See FINKELSTEIN & LEVIN, supra note 34, at 37-38; KAHN & SEMPOS,
supra note 52, at 55; LILIENFELD & LILIENFELD, supra note 53, at 209-10. In case-control studies, where
the study group is identified as having an injury or disease and a comparison group is a suitably matched
group, the odds ratio provides a stable and unbiased estimate of the relative risk. HENNEKENS & BURING,
supra note 99, at 79-81.

Another advantage of the odds ratio is that it avoids the dependence of relative risk on the
choice of reference class. A low injury rate (such as 5% of exposed cases, 1% of unexposed cases) may
translate into a high relative risk (five times the unexposed risk). If the same percentages, however, are
used to calculate non-injury cases (95% for exposed, 99% for unexposed), the “relative safety” seems
reasonably high (.95/.99 = 95.95%). The odds ratio components, however, remain the same whether
“risk” or “safety” is being described, only the numerator and denominator are reversed: the odds ratio of
injury is equal to 99719 (that is, (5/95)/(1/99)) and the odds ratio of non-injury is equal to 19/99 (or
(95/5)/(99/1)). See, e.g., FINKELSTEIN & LEVIN, supra note 34, at 37-38; KAYE & FREEDMAN, supra note
26, at 109-10. Thus, an odds ratio is less subject to rhetorical manipulation.
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distribution for RR, and can use that distribution and the selected level of
significance to find the critical value for RR in the study. If the sample RR is
more extreme than that critical value, then the study results are statistically
significant for purposes of rejecting the null hypothesis.'® If, however, the
sample results are not statistically significant, the convention on statistical
significance does not warrant rejecting the null hypothesis. Confidence in-
tervals can also be constructed for RR. Suppose that the sample has a RR =
2.5 and that the 95% confidence interval based on the sample is 1.7-3.7.'%
This means that, using a convention of statistical significance at the 0.05
level, the sample results are consistent with values for the population RR
ranging from 1.7 to 3.7. Since the null hypothesis of RR = I lies outside the
specified confidence interval, a factfinder would be warranted in rejecting
the null hypothesis as probably not true. That is, he would be warranted in
concluding that the sample RR of 2.5 probably did not result merely by
chance from a population with RR = 1.

Relative risk is used as a predictive model for the relative frequency of
events within groups of individuals—for example, to predict the number of
injuries in a group of people exposed to a chemical. Suppose that, with
measurement and sampling uncertainties at acceptable levels, the real rela-
tive risk for exposed groups in the population is 2.5 and that about ten inju-
ries would occur per 100,000 people without exposure. The relative risk
model predicts that the rate for an exposed group would be approximately
twenty-five per 100,000, or an increase of fifteen cases per 100,000 people
exposed. The proportional increase in the exposed group is generally called
the “attributable risk”—an estimate of the proportion or number of injuries
in the exposed group that might be attributed to the exposure and not to
baseline causes.''® Autributable risk therefore estimates that proportion of

108.  For discrete data, such as that presenied in the 2 x 2 table in Table 1, the chi-square test is com-
monly used to determine whether the difference in incidence rates between the study and comparison
groups is statistically significant. See, e.g., HENNEKENS & BURING, supra note 99, at 249-52,
109.  This example, with calculations, can be found in Vern R. Walker, The Concept of Baseline Risk
in Tort Litigation, 80 Ky. L.J. 631, 661 n.92 (1991-1992). For discussions on how to construct confi-
dence intervals for relative risk or the odds ratio, see HENNEKENS & BURING, supra note 99, at 252-58;
KAHN & SEMPOS, supra note 52, at 45-69; LILIENFELD & LILIENFELD, supra note 53, at 343-46; and
SELVIN, supra note 76, at 344-47 (odds ratio).
110, Attributable risk is defined as the difference between the incidence rates in exposed and unex-
posed groups (incidence rate if exposed minus incidence rate if not exposed), as a proportion of the
incidence rate in the exposed group (the “attributable fraction” or “rate fraction”). Green et al., supra
note 6, at 351-52; Sander Greenland, Relation of Probability of Causation to Relative Risk and Doubling
Dose: A Methodologic Error That Has Become a Social Problem, 89 AM. J. PUB. HEALTH 1166, 1167
(1999). Attributable risk is also defined as “the maximum proportion of a disease thai can be attributed
to a characteristic or etiological factor,” LILIENFELD & LILIENFELD, supra note 53, at 217, and some-
ltimes as “the difference between the incidence rates in the exposed and nomexposed groups.”
HENNEKENS & BURING, supra note 99, at 87-95.

It is a fallacy, however, simply to equate attributable risk and probability of causation, determin-
ing the latter requires “a specific biologic model for the disease process.” See Greenland, supra, at 1167.
Unfortunately, some courts too readily interpret attributable risk as causal. E.g., Mermrell Dow Pharm.,
Inc. v. Havner, 953 S.W.2d 706, 721 (Tex. 1997} (citing the “attributable proportion of risk” as
“|plerhaps the most useful measure,” saying that “it reflects the percentage of the disease or injury that
could be prevented by eliminating exposure to the substance™).
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cases in the exposed group that is in excess of baseline, assuming that the
incidence in the comparison group is a good estimate of the baseline inci-
dence.'"’

Leaving important variables out of account may produce only a crude
estimate of true relative risk, and taking those variables into account might
increase or decrease the “refined” or “adjusted” relative risk.'”” Regression
models refine or adjust statistical measures of association by explicitly tak-
ing multiple variables into account, both categorical and quantitative vari-
ables.'"” The predicted variable is generally called the “dependent variable.”
An “independent variable” is any variable used to make the prediction, and
is therefore part of the evidence that warrants the prediction. Particular
fields of science may have different terminology for this same evidentiary
relationship. For example, the medical literature often refers to the depend-
ent variable as the “outcome variable” or “response variable” and to an in-
dependent variable as a “predictor variable.”'"* The terminology used to
describe regression models, however, should not have a causal connotation.
Causal explanations impose causal interpretations on predictive models of
the sort discussed in the next section. This section discusses the merely as-
sociational models that support predictions and the uncertainty inherent in
using such models.

A simple model involving only two variables will introduce the basic
concepts underlying regression models. Assume that a study analyzes data
for a pair of quantitative variables, such as a quantitative measure of expo-
sure to a chemical and the concentration of protein in a person’s urine. In a
given context, one of these variables is the independent or predictor vari-
able, and the other is the dependent or predicted variable. For each individ-

111.  KAHN & SEMPOS, supra note 52, at 72-81.
112.  E.g., id. at 85-113 (discussing techniques for adjusting odds ratios without using multivariate
models). For discussions on the effect on relative risk, see infra notes 160-64, 176-80, 227 and accom-
panying text.
113.  For discussions of linear regression medels in various areas of science, see WILLIAM D. BERRY
& STANLEY FELDMAN, MULTIPLE REGRESSION IN PRACTICE (1985); BLAND, supra note 65, at 188-211
(medicine); COHEN & COHEN, supra note 31, at 68-71 (behavioral sciences); HAYS, supra note 34, at
597-809 (experimental psychology); LOETHER & MCTAVISH, supra note 27, at 230-48, 314-57 (sociol-
ogy); LARRY D. SCHROEDER ET AL., UNDERSTANDING REGRESSION ANALYSIS: AN INTRODUCTORY
GUIDE (1986); and Katherine Godfrey, Simple Linear Regression in Medical Research, in MEDICAL
USES OF STATISTICS 201-35 (John C. Bailar Il & Frederick Mosteller eds., 2d €d.1992) (focusing on
examples from articles published in the New England Journal of Medicine).

For discussions of regression analysis in a legal context, see FINKELSTEIN & LEVIN, supra note
34, at 350-479; Michael O. Finkelstein, The Judicial Reception of Multiple Regression Studies in Race
and Sex Discrimination Cases, 80 CoLUM. L. REv. 737 (1980); Michael Q. Finkelstein, Regression
Maodels in Administrative Proceedings, 86 HARV. L. REV. 1442 (1973) [hereinafter Regression Models];
Franklin M. Fisher, Multiple Regression in Legal Proceedings, 80 COLUM. L. REv. 702 (1980); and
Daniel L. Rubinfeld, Reference Guide on Multiple Regression, in REFERENCE MANUAL ON SCIENTIFIC
EVIDENCE 179 (Fed. Judicial Center ed., 2d ed. 2000), available at http://www.fjc.gov/public/pdf.nsf/loo
kup/sciman00.pdf/$file/sciman(0.pdf. For cases involving regression analysis, see McCleskey v. Kemp,
481 U.S. 279 (1987) (death penalty); Bazemore v. Friday, 478 U.S. 385 (1986) (employment discrimina-
tion); and Campos v. City of Baytown, 840 F.2d 1240 (5th Cir. 1988) (voting dilution), cert. denied, 488
U.S. 1002 (1989).
114.  See, e.g., BLAND, supra note 65, at 190; Godfrey, supra note 113, at 201-02.
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ual involved in the study, there is a measurement value for each of the two
variables. A graph can chart the possible values of the independent variable
along the horizontal axis and the possible values of the dependent variable
along the vertical axis, as in Figure 1. The hypothetical data for Figure 1 are
similar to those in a study of kidney dysfunction in workers exposed to
cadmium.'” An individual’s exposure is measured in milligrams of cad-
mium per cubic meter of air, multiplied by the number of work days ex-
posed to such an air concentration.''® The level of kidney dysfunction is
measured by the small protein -2-microgiobulin in each worker’s urine, as
a ratio to serum creatinine.''” A point is entered on the graph for each indi-
vidual, using the value on each variable to determine the appropriate loca-
tion within the area of the graph. This produces a “scatterplot” depicting all
individuals and their measurements—a two-dimensional map locating every
individual on the scales of the two variables. The dashed horizontal line,
with a value of about 700 on the vertical axis, is the arithmetic mean for the
values of the dependent variable (-2-microglobulin in urine).

The values of the independent variable (exposure) could be used to pre-
dict the values of the dependent variable. A mathematical model is linear if
the formula used to make those predictions identifies a straight line.""® Fig-
ure 2 shows such a straight line drawn through the scatterplot. Moving
along the line from the lower left corner of the graph to the upper right cor-
ner, the values of the independent and dependent variables both increase.
Because the line is straight, these values for the line increase at a constant
rate relative to each other.'" That is, for each unit of change in the inde-
pendent variable, there is a constant amount of change in the dependent
variable, all along the line.'?°

115.  This simplified example with hypothetical data is derived from Thun, supra note 99, at 105-26.
116.  Id. at 105-26.

7. id

118.  See LOETHER & MCTAVISH, supra note 27, at 232-34,

119, See, e.g., COHEN & COHEN, supra note 31, at 27; Regression Models, supra note 113, at 1448,
Godfrey, supra note 113, at 202.

120.  See COHEN & COHEN, supra note 31, at 27,
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FIGURE 2
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For every straight line that can be drawn through the scatterplot of data,
there is an algebraic formula that calculates the point on the line associated
with any value of either variable.'”" A straight line identifies the values of
the dependent variable as some constant multiple of the independent vari-
able, adjusted bg/ another constant, as shown by the following general alge-
braic formula:'?

Y=A+ BX.

The constant A is the point on the vertical axis where the line intersects that
axis; that is, it is the Y-value on the line when X = (0. The constant A is
called the “Y-intercept” because it is the point where the line crosses the Y
axis (vertical axis).'”” The constant B is the rate of change in the Y-value on
the line for every unit of change in the X-value.'” In Figure 2, B is the con-
stant quantity by which the line rises vertically as the value of X increases

121,  See LOETHER & MCTAVISH, supra note 27, at 232-34.

122,  Seeid.
123.  Seeid. at 233.
124, See id.
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horizontally. The constant B is therefore called the “slope” of the line.'?
Given these two constants, a point of Y-axis intercept and a constant rate of
change, the resulting model identifies a unique straight line through the
scatterplot. Each choice of different values for either A or B defines a differ-
ent straight line through the data.

Such a linear model can be used to make predictions about risk—that is,
about rates of occurrence within groups of individuals. To predict a value
for the dependent variable based on a value for the independent variable,
one would find the relevant point on the independent axis (X), find or calcu-
late the point on the line directly above that point, and use the Y coordinate
for that point on the line as the predicted value for the dependent variable.
In the kidney dysfunction example in Figure 2, an exposure of 2000 mg/m’-
days would lead to a prediction (based on the displayed linear model) of
about 1700 pg of B-2-microglobulin per gram of creatinine in a worker’s
urine. Predictive error would occur whenever an individual’s true value on
the dependent variable is different than the value given by the prediction
line."”® When a regression model has exposure as an independent variable
and injury as a dependent variable, then predicted value can be interpreted
as an estimate of risk based on exposure. Obviously, the prediction line will
generate the same predicted value for any one value of X. The model will
have predictive error to the extent that there is variability among the real Y
values for different individuals who have the same X value.

The amount of residual predictive error can be minimized by carefully
choosing the prediction line.'”’ Some straight lines through the data points
are better predictors than others. Scientists minimize predictive error by
using the line that is identified by the “least squares” technique.'® The
method of least squares 1dentifies the particular line with the least predictive
error around it, using as the measure of predictive error the average (arith-
metic mean) of the squared differences between the individual values and
the mean value.'™ This line is called the “linear regression line,”"*® and its
algebraic form is simply a straight line:

Y, =A+B(X}),

125. W

126.  If there is measurement error, then the observed Y-value for an individual might not lie on the
prediction line, whereas the real Y-value does. There would be no modeling error, but this fact would be
masked by the measurement error. Conversely, due 10 measurernent error, the observed Y-value might lie
on the prediction line, but the real value dees not. In such a case, the model would not be as accurate in
predicting real Y-values as it appears,

127.  See BLAND, supra notc 653, at 191; LOETHER & MCTAVISH, supra note 27, at 238, 246-47.

128.  See BLAND, supra note 63, at 191; LOETHER & MCTAVISH, supra note 27, at 238, 246-47.

129.  See BLAND, supra note 63, at 191-94; COHEN & COHEN, supra note 31, at 42-43, 50, 77,
FINKELSTEIN & LEVIN, supra note 34, at 358-61; LOETHER & MCTAVISH, supra note 27, at 246-48;
SCHROEDER ET AL., supra note 113, at 17-23.

130. LOETHER & MCTAVISH, supra note 27, at 233,
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where X; is the value of the independent variable X for any particular indi-
vidual {, and Y; is the predicted value of the dependent variable ¥ for that
same individual.”' The constant A is now called the “regression constant,”
which is the predicted value of ¥ when X = 0.2 The constant B is called the
“regression coefficient,” the constant amount by which the predicted value
of Y increases (or decreases) for every unit of increase in X.'" Using least
squares as the measure of predictive error, the regression line is, by defini-
tion, the best linear predictor for the dependent variable within a given set
of data. Of course, even the regression line can still have considerable dis-
persion around it, and it might be a very poor predictor for Y. However, it is
still the best linear predictor, in the sense that any other straight line through
these data, on these two variables, would have even more dispersion around
it and would lead to even more predictive error.

It is therefore important to ask how good the regression line is as a pre-
dictive model for a set of data, or how well the model “fits” the data. Statis-
ticians construct direct measures of dispersion around the regression line."
However, scientists usually find more useful one or more indirect measures
of how well the model fits the data, such as comparing the predictive per-
formance of the regression line to that of the arithmetic mean of the depend-
ent variable. For example, to predict the heights of individuals in a group of
people with the least amount of signed error on average, one would make
predictions using the arithmetic mean of the heights of the people in the
group.”® Over many such predictions for randomly drawn individuals, the
expected error would be lower using the arithmetic mean than using any
other single value. But suppose it is known how each individual in the
group scored on a second variable, such as weight or age. Should the infor-
mation about that second variable be used to predict height, or should one
continue simply to use the group mean for height and ignore the second
variable? Would using the regression line as the predictor decrease the pre-
dictive error as compared to using the mean? The answer is that predictions
should be based on the regression line if the error around it (measured as

131.  There exists some minor ambiguity in this notation. The individual denoted by i may be unique,
but that individual’s X-score (X;) is not, nor is the predicted Y-score (¥). Therefore, X: denotes a classifi-
cation category on the X variable, and Y; denotes the classification category on the Y variable that corre-
sponds to the point {X;, ¥;} on the regression line.

The regression equation is sometimes written to yield the observed values of individuals, which
may net lie directly on the regression line, but rather ahove or below the line by some “error value™ e::

Yi=A + B(X) + e

WONNACOTT & WONNACOTT, supra note 60, at 373; 400-01.
132.  COHEN & COHEN, supra note 31, at 42.
133,  Id. at 11-12, 41-44; LOETHER & MCTAVISH, supra note 27, at 234-39; SCHROEDER ET AL,
supra note 113, at 11-17; Godfrey, supra note 113, at 202-15.
134.  See, e.g.. COHEN & COHEN, supra note 31, at 46-49, 126-30, 354-55. Two direct measures of
residual modeling uncertainty are the variance of residual error (or “variance of residuals”) and the
standard deviation of residual error (or “standard deviation of residuals”). See id. The variance of resid-
ual ervor is the average of the squared differences between observed scores and predicted scores, and the
standard deviation of residual error is the square root of that average. Id.
135.  For any given group, the amount of signed error around the arithmetic mean is zero. HAYS,
supra note 34, at 172-73.
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average squared difference from the mean) is less than the variance of the
dependent variable alone (that is, the average squared difference around that
variable’s mean).

The coefficient of determination, or r2, reports the proportion of average
predictive error that can be eliminated by using the regression line, as com-
pared to using simply the mean of the dependent variable.'* It is the propor-
tion of the variance of the dependent variable that can be eliminated by us-
ing the regression line as the predictor."”” The coefficient r? ranges from
zero to one.'>® When r? = 0, the regression line provides no more predictive
success than the mean alone.'” If r2 = I, then there is no predictive error
using the regression line: that is, all the data points fall precisely on the re-
gression line. As r? increases from zero to one, it is a useful index of scatter
reduction and predictive success, because it is the proportion of variance
eliminated by using the regression line. In that sense, it is also a measure of
the strength of linear statistical association between the two variables.

The square root of r? (simply “r”) is Pearson’s correlation coefficient.'*®
Like 72, r ranges in absolute value from zero to one: r = 0 if there is no cor-
relation between the variables, and r = I if there is perfect correlation.'"’ So
like 72, r measures the degree or strength of correlation, and r obtains its
intuitive meaning through r2'* For example, an r = 0.5 corresponds to an r?
= (.25, which in turn means that 25% of the variance of the dependent vari-
able is eliminated using the regression line. However, one advantage of r
over r2 is that r can be positive or negative, ranging from negative one (per-
fect negative or inverse correlation) to positive one (perfect positive correla-
tion)."*

It is one thing to know what these statistical measures mean, and an-
other to appreciate when the results have practical significance. Is reducing
the squared error by 25% a good performance for a mathematical model?
The reasonable expectations of scientists vary depending on the context. For
example, in the behavioral sciences, where many factors can influence hu-
man behavior and researchers seldom expect any single independent vari-
able to be a very good predictor, an r = 0.1 is sometimes considered a small

136.  Id ai 613-14; LOETHER & MCTAVISH, supra note 27, at 239-41; SCHROEDER ET AL., supra note
113, at 26; Regression Models, supra note 113, at 1448-53.

137.  HAYS, supra note 34, at 614.

138. WONNACOTT & WONNACOTT, supra note 60, at 487.

139, Seeid.

140.  HAYS, supra note 34, at 608-13; LOETHER & MCTAVISH, supra note 27, at 239-40. The correla-
tion coefficient is different from, but related to, the regression coefficient. HAYS, supra note 34, at 608-
13. The correlation coefficient is a symmetrical measure of association between the two variables, while
the regression coefficient is asymmetrical because it predicts the dependent variable using the independ-
ent variable. COHEN & COHEN, supra note 31, at 34-44. The value of the correlation coefficient would be
identical to that of a regression coefficient calculated for standardized scores of the two variables. Id.at
30-36; see HAYS, supra note 34, at 608-11; LOETHER & MCTAVISH, supra note 27, at 241-46;
SCHROEDER ET AL., supra note 113, at 28-29; Godfrey, supra note 113, at 215-17.

141.  HAYS, supra note 34, at 608-13; LOETHER & MCTAVISH, supra note 27, at 239-40,

142, HAYS, supra note 34, at 608-14; LOETHER & MCTAVISH, supra note 27, at 239-40.

143.  See LOETHER & MCTAVISH, supra note 27, at 240.
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degree of correlation, r = 0.3 a medium degree, and r = 0.5 a large degree.'*
So, for behavioral studies, a population > = (.25 indicates quite a good
model fit. Predictive expectations in medicine can be higher, and scientists
in the physical sciences dealing with relatively simple phenomena might
expect and achieve even better fits from their models. Ultimately, the ques-
tion of whether the “goodness of fit” of a mathematical model is acceptable
depends upon what is at stake in the particular pragmatic context. Even in
legal factfinding, the fit of a model might be “good enough” for some pur-
poses (such as regulatory measures to protect public health) but not for oth-
ers (such as imposing a fine on a defendant). The acceptability of model fit
in factfinding about specific causation in tort cases is only one particular
application within law.

So far this discussion of regression analysis has addressed only the
modeling uncertainty that is due to the choice of a particular straight line as
the prediction line. A particular line is chosen when values are assigned to
the two constants A and B in the mathematical formula ¥ = A + BX. Such
modeling error is minimized by finding and using the values for A and B
that produce the regression line. The correlation coefficient for a linear re-
gression model measures the improvement in predictive success using the
best linear model. A low value for r, for example, means that the best linear
model does not substantially improve predictive success over the simple
mean. But such a low value for r does not evaluate another kind of model-
ing uncertainty—the uncertainty created by the selection of the mathemati-
cal form to be used. It may be that for a particular set of data a nonlinear
prediction line would yield less predictive error than any straight line.'®’
Even if r is low for the linear regression model, there may still be a statisti-
cal association between the two variables, only the association is not a linear
one.'* For example, for a particular data set, a quadratic equation of the
form Y = A + BX + CX° might be a better fitting model than any linear
equation.'” Figure 3 illustrates a nonlinear model. Regression techniques
can be used to find best-fitting nonlinear models, and the kinds of issues
discussed above for linear models have their counterparts with nonlinear
models.'*

144.  CoHEN & COHEN, supra note 31, at 59-61.

145. LOETHER & MCTAVISH, supra note 27, at 240-41, 247.

146. id.

147.  BERRY & FELDMAN, supra note 113, at 60-64.

148.  Id at 9-18, 51-64; COHEN & COHEN, supra note 31, at 223-74; WONNACOTT & WONNACOTT,
supra note 60, at 449-51.
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The predictive uncertainty due to the decision to use a particular form of
mathematical model is therefore a second major type of modeling uncer-
tainty. Every mathematical model has formal assumptions or conditions to
be met, analyzes the observational data in certain ways, and 9produc:e:s statis-
tics that have a potential for predictive error when applied.'” Before relying
upon any modeling statistics, a reasonable factfinder would evaluate the
evidence that warrants that the formal conditions are sufficiently satisfied,
that the resulting statistics are appropriately applied, and that the residual
predictive uncertainty is within acceptable bounds for the legal purposes at
hand.

The kind of predictive error measured by /# and r is only the uncertainty
due to mathematical modeling, for these statistics characterize the decreased
variability due to using the regression line. They do not address the meas-
urement uncertainty inherent in the data, because the mathematical model
uses the data (scatterplot points) as given."® In addition, sampling uncer-

149.  For a discussion of formal assumptions or conditions for applying regression analysis, see KAHN
& SEMPOS, supra note 52, at 140-43. See aiso infra note 172,

150. However, lincar regression analysis is commonly used to assess the validity of measurement
techniques. There may be a criterion or reference method for taking a measurement on a variable, such
as a laboratory method for measuring blood glucose. If a new, more convenient, and less costly meas-
urement technique is developed, medical scientists will want to know how well the measurements using
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tainty only occurs if a statistical association observed in a sample is used to
make inferences about the statistical association in the population. When
experts wish to generalize from study samples to populations, they can con-
duct significance testing for hypotheses about the population coefficient of
determination and the population correlation coefficient,”' and they can use
sample data to construct a confidence interval for parameter values consis-
tent with the sample results.”*? They can also determine the power of a study
to detect a true population 7 or  of a given magnitude.”® But even a re-
gression model constructed on accurate and complete population data (not
simply sample data) would still introduce predictive uncertainty, as long as
there is residual variability among individuals in that population.

An important advantage of a regression model is that it takes variables
into account transparently by including them as independent variables.>*
Moreover, multivariate regression models can incorporate several predictor
variables and can model the increase in predictive success when multiple
kinds of information are taken into account."”®> A multiple regression model
adds new variables to the right side of the prediction equation, as in the fol-
lowing equation for two independent variables X and Z:¢

Y=A+BX + CZ.

The prediction for Y is calculated using not only the value on variable X, but
also the value on variable Z. The Y-intercept A is the value on the Y variable
when both X and Z equal zero. In a multivariate model there is also a coeffi-

the new technique correlate with measurements using the criterion method. In such an application, the
correlation coefficient is often referred to as a validity coefficient and it provides a measure of the valid-
ity of the new method relative to the criterion method. CARMINES & ZELLER, supra note 26, at 17-18;
GHISELLI ET AL., supra note 26, at 269. The question of when the degree of criterion validity is accept-
able depends upon the pragmatic context, which includes clinical concern for the patient’s welfare if
there are extreme under-predictions or over-predictions. Certain directions and degrees of bias might be
more medically troubling than others.
151.  On significance testing and confidence intervals for r or r, see COHEN & COHEN, supra note 31,
at 51-59, 62-65; HAYS, supra note 34, at 620-31, 644-52; LOETHER & MCTAVISH, supra note 27, at 600-
04, Regression Models, supra note 113, at 1449-53; and Fisher, supra note 113, at 716-20.
152.  See supranote 151.
153.  COHEN & COHEN, supra note 31, at 59-61.
154. See WONNACOTT & WONNACOTT, supra note 60, at 397.
155. On multiple regression analysis, see BERRY & FELDMAN, supra note 113, at 1-71; COHEN &
COHEN, supra note 31, at 1-120, 300-50; HAYS, supra note 34, at 673-809; WONNACOTT &
WONNACOTT, supra note 60, at 397-514; and Rubinfeld, supra note 113, at 181-85.
156.  The general form for a multiple linear regression model is:

Yi=A+ 8B, (Xy: )+ Ba(Xz )+ ...+ B (Xs 1),
where Y; is the predicted vatue of ¥ for individual i, X, through X, are k independent variables and X, is
the value of variable X; for individual {. COHEN & COHEN, supra note 31, at 81-85. A is the Y-intercept
or regression constant, and B, through B are the “partial regression coefficients” for the independent
variables. /d. The meaning of the regression constant here is similar to the meaning in the bivariate
model: A is the predicted value of ¥ when the value of every independent variable in the model is zero. A
partial regression coefficient B; is the (constant) increase in the predicted value of Y for a unit increase in
the independent variable X, when the values of all the other independent variables are held constant. See
COHEN & COHEN, supra note 31, at 81-100; HAYS, supra note 34, at 673-80, 687-92; WONNACOTT &
WONNACOTT, supra note 60, at 396-414.
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cient for each independent variable."’ In the formula above, the constant B
is the coefficient for variable X and C is the coefficient for Z. These con-
stants, called partial regression coefficients, state the direct contribution of
each independent variable to the predicted value of Y, gfter the contributions
of all the other independent variables have been taken into account.'”® A
partial regression coefficient states the incremental contribution to the pre-
diction attributable to that specific independent variable, compared to what
the prediction would have been with only the other independent variables
included in the regression model.'”

A multiple regression model finds the best-fitting predictor for the com-
binarion of independent variables. The best predictor uses the independent
variables as a group to minimize the mean squared differences for predic-
tions on the dependent variable. Because a multiple regression model is that
combination of coefficients that produces the least amount of predictive
error, some partial regression coefficients might change if independent vari-
ables are added to the model or some are taken away. If an independent
variable that is statistically irrelevant is added to the model (that is, a vari-
able whose partial regression coefficient in the population is zero), this will
tend to increase the standard error (and hence widen the confidence inter-
vals) for the partial coefficient of another independent variable in the model
that is correlated with it.'® Therefore, adding variables that turn out to be
irrelevant tends to increase the measures of sampling uncertainty.'®' Doing
s0 may also increase the risk of observing statistical significance that occurs
merely by chance (Type 1 error), because the number of variables with par-
tial correlation coefficients is increased.'®

On the other hand, if a statistically relevant independent variable is
omitted from the model (a variable whose partial regression coefficient in
the population is not zero), then this will bias the coefficient of an inde-
pendent variable in the model that is correlated with the omitted variable,
and may do so seriously.'® This means that the long-run expected value of
sample coefficients for the included independent variable will be higher or

157.  See LOETHER & MCTAVISH, supra note 27, at 332-33,

138.  The partial regressicn coefficient for an independent variable X; describes the change in the
dependent variable “that accompanies a unit change in the regressor X,, if all the other regressors remain
constant.” WONNACOTT & WONNACOTT, supra note 60, at 413. Each partial regression coefficient
“represents the relative amount of contribution of that variable [to the overall prediction], after contribu-
tions of the other variables included in the regression equation are taken into account.” LOETHER &
MCTAVISH, supra note 27, at 332. A partial correlation coefficient can also be computed for each inde-
pendent variable in the model, a conceptual counterpart to the bivariate corrclation coefficient. See
COHEN & COHEN, supra note 31, at 91-92; LOETHER & MCTAVISH, supra note 27, at 317-18, 333-34,
159, See WONNACOTT & WONNACOTT, supra note 60, at 400-14.

160.  See BERRY & FELDMAN, supra note 113, at 12-14, 18-20.

161.  The standard error for the coefficient of the irrelevant variable is prebably not zero, and it will
be increased by correlation with another independent variable in the model. /4. The increase in this
standard error means that there is a greater probability of drawing a sample with a non-zero coefficient
for the irrelevant variable. Id,

162.  See supra text accompanying notes 74-75.

163.  See BERRY & FELDMAN, supra note 113, at 20-21; WONNACOTT & WONNACOTT, supra note
60, at 397-400, 406-09, 417-20; Rubinfeld, supra note 113, at 188-89.
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lower than its population coefficient, perhaps by a substantial amount. This
potential for bias makes it important to include such “confounding vari-
ables” in the model and to control statistically for any relevant independent
variables.'®*

Thus, a multiple regression model is the best-fitting model using a par-
ticular set of variables. The multiple correlation coefficient R is a measure
of how well the predictive model performs as a whole.'® R is, for the multi-
variate model, the counterpart to the correlation coefficient r of a bivariate
model.'® It is an index of the strength of linear association between the in-
dependent variables as a set and the dependent variable.'®” The statistic R
varies from zero to one: when R = 0, the model predictions for the depend-
ent variable are no better than the arithmetic mean of the dependent vari-
able, and when R = ] there is perfect correlation, with no predictive error at
all.'® The multiple correlation coefficient R can also be squared, yielding
R?, called the coefficient of multiple determination.'® R? is the proportion of
the variance in the dependent variable that is eliminated by making predic-
tions using the multiple regression model instead of the dependent vari-
able’s arithmetic mean.'”® As with bivariate regression, the statistics R and
R? for linear regression models provide measures of predictive success only
for the best-fitting linear model. It might be that, for a particular set of vari-
ables and a particular data set, a nonlinear model would reduce modeling
uncertainty better than the best linear model would.

The relevance of modeling uncertainty to direct inference can now be
summarized. The major, statistical premise of a direct inference to specific
causation asserts a causal connection between two variables, A and B. Nor-
mally, a statistical association between A and B warrants using A to predict
B and furnishes empirical evidence of the causal relationship. The statistical
model supporting the major premise is, however, a source of uncertainty
that can undermine any predictions, any causal interpretation, and ultimately
any direct inference. There are two major sources of modeling uncertainty.
The first is the specification of variables within the model—especially

164. A definition of “confounding factor” is provided in Green et al., supra note 6, at 369-73, 389, A
confounding factor is “both a risk factor for the disease and a factor associated with the exposure of
interest. Confounding refers to a situation in which the effects of two processes are not separated.” id. at
389. See infra note 173. See also HENNEKENS & BURING, supra note 99, at 35-37; Kaye & Freesdman,
supra note 26, at 138-39. On the possible effect of adding new variables to the model, see supra notes
160-64; infra notes 176-80, 227 and accompanying text.

165.  See LOETHER & MCTAVISH, supra note 27, at 334-35.

166. Id.

167.  Id. at 332-35.

168. COHEN & COHEN, supra note 31, at 86-88; LOETHER & MCTAVISH, supra note 27, at 334-35.
Once the multiple regression model is used to calculate the predicted values of ¥, the multiple correla-
tion R is simply the correlation r between these predicted values and the observed Y values. See
WONNACOTT & WONNACOTT, supra note 60, at 496-97. Unlike the bivariate Pearson correlation r, the
value of R cannot be negative. HAYS, supra note 34, at 698.

169.  COHEN & COHEN, supra note 31, at 86-88; LOETHER & MCTAVISH, supra note 27, at 334-35.
170.  CoHEN & COHEN, supra note 31, at 86-88, 100; HAYS, supra note 34, at 696-700; LOETHER &
MCTAVISH, supra note 27, at 334-35; WONNACOTT & WONNACOTT, supra note 60, at 497.
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whether the model takes into account enough of the relevant variables, so
that the model’s risk statistics have acceptable accuracy relative to the target
population. The second major source of uncertainty is the form of model
used, including the conditions to be met and the kinds of statistics gener-
ated. Both sources of modeling uncertainty are in addition to measurement
uncertainty and sampling uncertainty,'”' and both sources contribute to the
residual potential for predictive error, which can undermine any premise
that most things in category A are also in category B as a result of being in
category A.

Relative risk calculated from a regression analysis can quantify the
strength of association within a general causal relationship, but use of such a
statistic is always subject to modeling uncertainty. A reasonable factfinder
must decide whether the model takes into account an adequate number of
the relevant variables, whether the formal conditions of the model have
been adequately satisfied,'””> whether the particular model has an acceptable
fit to the data, and whether the residual degree of predictive error is accept-
able. In the context of direct inference in torts, there are two distinct objec-
tives to be considered. The first is model acceptability for purposes of find-
ing general causation. The next section of the Article discusses such a
causal interpretation of the model. The second is model acceptability for
purposes of drawing a direct inference of specific causation. Part II of the
Article discusses the role of modeling in warranting that inference.

D. Acceptable Causal Uncertainty: Explaining the
Probability of Event Occurrence

This section completes the analysis of the uncertainties that are inherent
in a major, statistical premise about general causation within groups of indi-
viduals. General causal propositions relate two or more variables by stating
what types of events are causally linked to other types of events. Examples
are whether the ingestion of Bendectin during pregnancy can cause the fetus
to develop abnormally, whether ingesting water with a certain lead concen-
tration can have harmful developmental effects on children, or whether the
use of chlorofluorocarbon propellants in metered-dose inhalers for asthma

171.  See supra text accompanying notes 150-53. Modeling crror is in addition to measurement error
and sampling error. As stated in Rubinfeld:
If the expert calculated the parameters of a multiple regression model using as data the entire
population, the estimates [coefficients] might still measure the model’s population parameters
with error. Errors can arise for a number of reasons, including (1) the failure of the model to
include the appropriate explanatory variables; (2) the failure of the model to reflect any
nonlinearities that might be present; and (3) the inclusion of inappropriate variables in the
model.
Rubinfeld, supra note 113, at 198.
172.  The appropriate use of multiple regression models involves meeting or respecting more condi-
tions than those discussed here. Such conditions involve additivity and linearity, collinearity, scedastic-
ity, and autocorrelation. See generally BERRY & FELDMAN, supru note 113, at 37-88; LOETHER &
MCTAVISH, supra note 27, at 329-30,
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patients can damage the ozone layer. Such conclusions about general causa-
tion assert more than mere predictions based on a correlation. Causal expla-
nations describe the causal tendencies or influences that underlie the ob-
served associations and account for them. Causal accounts provide the war-
rant for predictions about unobserved events, and also for explanations why
such events are likely or unlikely to occur in circumstances beyond those
studied in the sample data. Causal explanations supply the evidentiary war-
rant for direct inferences to specific causation in the particular case.

The ideal warrant for a general causal explanation is a controlled ex-
periment designed to keep causal uncertainty to acceptable levels. Causal
uncertainty is the potential for error created by imposing a causal interpreta-
tion on a predictive model. The ideal experimental protocol has several fea-
tures:'”” (1) it uses test subjects (such as laboratory animals) that are rela-
tively homogeneous with respect to all characteristics known to be risk fac-
tors for the dependent variable (such as age or genetic makeup); (2) the sub-
jects are randomly assigned to a test group and to a control group; (3) the
test group is exposed to the test agent (such as a drug) but the control group
is not; (4) the physical environment, diet, and other external factors for the
two groups are maintained in identical fashion, with the exception of the
exposure of the test group to the agent being tested; (5) the two groups are
carefully monitored for all independent variables that might prove to be
causally relevant; and (6) the two groups are carefully monitored for the
dependent variable (such as a disease) to determine whether there is a dif-
ference in incidence between the two groups.'” All measurement tech-
niques and data should be acceptably valid and reliable. The sample should
be acceptably large and random, and random assignment to the test and con-
trol groups warrants that any group differences are not due to the group-
assignment process. If the study sample is large enough, there might even
be warrant for thinking that the two groups are probably comparable to each
other on all relevant independent variables other than the test exposure. Any
residual variability can be measured and modeled with regression tech-
niques, looking for any potentially explanatory variables other than expo-
sure, Such a design therefore addresses both sampling and modeling uncer-
tainties. And any statistically significant outcomes between the test and con-
trol groups constitute evidence that the exposure variable is probably asso-
ciated with the outcome variable in the general population, not just in the
sample. At some point, especially after other controlled studies replicate
those results, there would be warrant for finding that the exposure variable
is also causally related to the outcome variable and that it helps explain the
outcome. Additional controlled experiments might even be able to model

173.  See BLAND, suprg note 65, at 6-25; HENNEKENS & BURING, supra note 99, at 178-212;
LILIENFELD & LILIENFELD, supra note 53, at 256-73; Lavori et al,, supra note 99, at 61-82; Moses, supra
note 99, at 5-25; Nelson, supra note 99, at 37-48.

174.  When there is a possibility of measurement bias due to knowledge of the group membership,
standard protocols include blind studies. See supra note 105 and accompanying text.
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the chain of causal events at the cell or biochemical levels, and intervention
at those levels (such as vaccination) might be able to alter outcomes.

Such an ideal controlled study has become the paradigm of warrant for
findings of general causation. The strategy behind a controlled experiment
is to create a situation in which, if there is a causal connection between two
variables, then it is likely to be detected as a statistically significant associa-
tion, manifested in a statistically significant relative risk or correlation coef-
ficient. Moreover, if a statistically significant association appears in the
study data, rhen it is unlikely to be due to chance or to some type of study
error, and the difference in outcome between the groups is probably due to
the one known difference between them—the difference in exposure or pre-
dictor variable. The controlled experimental design warrants the conclusion
that statistically significant results probably will be observed if, but only if,
there is a true causal connection between the types of events being studied.

Much of legal factfinding still involves the kinds of general causation
familiar from ordinary experience: falling heavy objects can crush other
objects in their paths, metal automobiles with momentum can severely in-
jure human bodies in a collision, bullets fired from guns can kill people. No
controlled experiments are needed because individual and collective experi-
ences amply warrant the general causal conclusions. However, the machin-
ery of legal factfinding is aimed increasingly at cansal claims whose war-
ranting evidence is not available to the casual observer—claims about the
metabolism of pharmaceuticals in the human body, the biological effects of
electromagnetic fields around electric transmission lines, or the influence of
the job applicant’s sex on an organization’s hiring decisions. In such cases,
untrained observations leave too much causal uncertainty.

Causal uncertainty is the additional uncertainty created precisely be-
cause the conclusion is about general causation and is based on a causal
interpretation of a predictive model. The primary source of causal uncer-
tainty is that the observed or predicted association is neither sufficient nor
necessary for general causation. A statistically significant association does
not always warrant making a causal connection, and the absence of a statis-
tically significant association does not always warrant asserting a lack of
causal connection. First, although the presence of a statistically significant
association in a study sample may be good evidence that a real statistical
association probably exists in the population, this study result might be
“causally spurious’—that is, it can lead to false causal conclusions.'”” A
real statistical association between A and B in a population does not entail
that A causes B. B may in fact cause A, and the direction of the purported
causal influence should be reversed. Or, the observed statistical association
might result because some third factor C has a causal influence on both A
and B. The influence of C might not be detected by a study design in which

175.  See COHEN & COHEN, supra note 31, at 359; JAMES A. DAVIS, THE LOGIC OF CAUSAL ORDER
16-27 (1985); DAVID A. KENNY, CORRELATION AND CAUSALITY 4 (1979); LOETHER & MCTAVISH,
supra note 27, at 292-99; WONNACOTT & WONNACOTT, supra note 60, at 487-89.
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C is not controlled either physically or statistically. Therefore, even a real
statistical association between A and B does not always warrant inferring
any causal action between A and B. As discussed in the previous section, a
relative risk of B given A, if calculated using an inadequately specified
model, might disappear altogether once additional variables are controlled.

Second, the absence of a statistically significant association between A
and B can lead to a false conclusion that there is no causal relationship be-
tween these types of events. This may be due merely to having statistical
power that is too low to detect the association and is, therefore, a problem of
sampling uncertainty. Even where sampling uncertainty is acceptable, how-
ever, and there is no statistical association to be detected in the normal
population, there might still be a causal relationship that would come to
light if the normal course of events were manipulated in different ways. For
example, in the complex causal systems studied in genetics, ecology, and
the medical and behavioral sciences, many causal influences are antagonis-
tic, with one or more events counteracting, masking, or “suppressing” the
would-be direct effects.”’® True causal relationships may be masked by the
causal influence of other events and not revealed unless researchers manipu-
late and monitor the masking events. The study protocol might limit the
ability to detect the causal influences of some variables, and the statistical
model might leave some variables out of the analysis.

A major source of causal uncertainty is, therefore, incompleteness in the
set of variables studied. In the language of multiple regression analysis, this
kind of causal error is induced by “premature closure” or ‘“under-
specification” of the regression model.””” If a causally relevant factor is not
included in the model as an independent variable, observed correlations may
be causally spurious and a lack of observed correlation may be causally
misleading. Moreover, the addition of a new independent variable to a
regression model might either increase or decrease a correlation coefficient
already in the model.'” For example, an observed correlation between A (an

176.  On suppressor variables generally, see COHEN & COHEN, supra note 31, at 94-96; DAVIS, supra
note 175, at 32-33; and LOETHER & MCTAVISH, supra note 27, at 299-301. “Suppression is a plausible
model for many homeostatic mechanisms, both biological and social, in which force and counterforce
tend to occur together and have counteractive effects.” COHEN & COHEN, supra note 31, at 96.
177.  See BERRY & FELDMAN, supra note |13, at 18-26; Fisher, supra note 113, at 708-09; Graham &
Garber, Evaluating the Effects of Automobile Safety Regulation, 3 J. POL’Y ANALYSIS MGMT. 206, 211-
12 (1984).
178.  As stated by Kenny:

Too often rescarchers examine the simple, or raw, correlation coefficient as an indication of

causal effects. The naive logic is thatif X causes Y, then X and Y should be correlated, and if

X does not cause Y, they should be uncorrelated. Neither staternent is true. After controlling

for other exogenous [causal or independent) variables, a strong relationship can vanish and a

zero relationship can become strong.
KENNY, supra note 175, at 62. As Davis puts it: “Absent variables might do anything. . . . [W]e cannot
always make the conservative assumption that additional variables would result in lower values [coeffi-
ctents] for our [causal] arrows. The missing variables might be suppressors.” DAVIS, supra note 175, at
65-66. The results of omitting relevant variables are potentially serious for the model. See, e.g., BERRY
& FELDMAN, supra note 113, at 20-25,

Relative risk estimates can increase or decrease once additional variables are taken into account.
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independent variable) and B (a dependent variable) might be partially or
entirely eliminated when a new independent variable C is added and corre-
lations appear between C and A and between C and B. The partial correla-
tion coefficient for A might approach zero once C is introduced into the
model, providing evidence that the original correlation between A and B
was causally spurious. This explains why scientists are reluctant to infer
causation merely on the basis of epidemiologic evidence, where many caus-
ally relevant variables may be unstudied.'™ A fortiori, mere reports of ob-
servations from individual cases usually provide even weaker evidence of
causation.'® Moreover, if the occasion of an observation is emotionally
charged or if the observer has a strong interest in a particular interpretation,
then the observation may lead to a superstitious belief in a causal connec-
tion, whereas a carefully controlled investigation would prove that the
causal interpretation is erroneous.

Various factors affect the weight of the evidence for placing a causal in-
terpretation on a statistical association. The weight of evidence or eviden-
tiary support for a true causal relationship can have degrees, and finding
general causation may be more or less warranted.'’ The first major factor
affecting the weight of evidence for general causation is, therefore, the ex-
tent to which the set of study variables is sufficiently complete. The degree
of warrant increases if there is good evidence that enough of the important
and causally relevant variables are included in the study, so that the ob-
served association is unlikely to be spurious. In the language of multiple

See, e.g., Greenland, supra note 110, at 1168 (stating that “[i]ndividual and population risks vary with
factors other than the exposure in question”; that “fa]s a result of the inevitable complex interactions
among risk factors,” the variation can be large; and that “it is possible for the variation to be in either
direction,” either increasing or decreasing); Irva Hertz-Picciotto, Shifting the Burden of Proof Regarding
Biases and Low-Magnirude Associations, 151 AM. J. EPIDEMIOLOGY 946, 947 (2000) (suggesting that
researchers should ask “what evidence exists that upward biases are present and that they outweigh
biases in the other (downward) direction™); Samuel Shapiro, Bias in the Evaluation of Low-Magnitude
Associations: An Empirical Perspective, 151 AM. J. EPIDEMIOLOGY 939 (2000) (giving examples from
data on oral contraceptives and breast cancer). Epidemiologists recount episodes where documented and
confirmed relative risks of two to three may vanish altogether when researchers conduct larger studies or
control for confounding variables. XYZ v. Schering Health Care, [2002] EZW.H.C. 1420 (QB), 2002 WL
1446183, 94 288-89 (July 29, 2002).

For further discussion of the statistical effects of including an irrelevant variable in a regression
model or of excluding a relevant variable, see supra notes 112, 160-64 and accompanying text.
179.  Green et al., supra note 6, at 335-38, 374-79.
180.  Mary Sue Henifin et al., Reference Guide on Medical Testimony, in REFERENCE MANUAL ON
SCIENTIFIC EVIDENCE 439, 474-75 (2d ed. 2000), available at http://www fjc.gov/public/pdf.nsf/lookup/
sciman00.pdf/$file/sciman00.pdf.
181.  Various areas of science have developed their own guidelines for causal inference—guidelines
adapted to the characteristics of the area. For example, epidemiology uses the Henle-Koch-Evans Postu-
lates to guide an inference from statistical associations to biological causation. See LILIENFELD &
LILIENFELD, supra note 53, a1 292-95, 316-18 (also discussing Henle-Koch Postulates in the context of
determining the causal role of a microorganism in an infectious disease); Bert Black & David E.
Lilienfeld, Epidemiologic Proof in Toxic Tort Litigation, 52 FORDHAM L. REv. 732, 762-64 (1984). The
guidelines used by the United States Environmental Protection Agency in inferring cancer causation
were modeled on criteria developed by Bradford Hill in examining cigarette smoking and lung cancer.
See Proposed Guidelines for Carcinogen Risk Assessment, 61 Fed. Reg. 17,960, 17,974-75 (proposed
Apr. 23, 1996).
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regression analysis, warrant requires good evidence that the regression
model is adequately specified. Another way to pose the question is whether
the available studies have taken into account enough of the factors that
might be confounding. A variable might be confounding either by creating
an observed association that is causally spurtous or by masking an associa-
tion that would otherwise appear.'®:

In principle, if a study has taken into account all of the variables that
might be causing the observed associations, then those associations that are
observed are more likely to reflect real causal connections, and an absence
of statistically significant associations is more likely to reflect an absence of
causation. In reality, however, studies almost never include all of the vari-
ables that might causally influence an outcome or dependent variable. Not
only observational studies on human subjects, but even controlled studies on
laboratory animals, must often leave out of account variables that can affect
or refine the study outcomes. Given the realities of causal complexity and
the limitations of human knowledge, we often accept a great deal of uncer-
tainty about general causation. The meaning of “sufficiently complete™ here
is, therefore, that enough important causal variables have been taken into
account given the pragmatic outcomes at issue in the legal context. Even
two or three independent variables might explain enough of the variation in
the dependent variable to satisfy the policies at work in a given factfinding
context.'® Or perhaps any additional variables would be unlikely to change
the observed associations so drastically as to undermine the ultimate legal
conclusion. Therefore, deciding that a particular degree of incompleteness is
acceptable is necessarily a practical issue to which non-epistemic considera-
tions are relevant.

The importance of a control group is to provide a similar comparison
group in which the unknown (but causally relevant) factors can bring about
similar effects in the absence of the test variable (exposure). Ideally, the
control group reproduces those unknown causal influences in the same pro-
portions and to the same extent that they occur in the test group. In a con-
trolled study, therefore, the study design may warrant the finding that a par-
ticular causal model is probably adequately specified. If the test group and
the control group are identical on all variables that are probably causally
relevant (other than the difference in exposure), if the two groups are large
enough to capture the combinations of unknown causal factors in similar
proportions, and if there occurs a statistically significant relative risk in the
test group, then this study design warrants the conclusion that the difference
between rates of occurrence is probably due to the exposure of the test
group. Therefore, a study has a stronger design, from the standpoint of sup-
porting causal inferences, if all potentially causal factors (other than the

182.  Green et al,, supra note 6, at 369-73; see supra notes 155-64 and accompanying text.

183.  See, e.g., Bazemore v. Friday, 478 U.S. 385, 397-404 (1986) (noting that while the omission of
variables from a regression analysis may render the analysis less probative, an analysis which accounts
for “major factors” is normally admissible in Title VII pattern and practice cases).
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variable being investigated) are held constant for the test and control
groups—including genetic factors, developmental factors for the individual
subjects, and environmental factors. The evidence of causal connection is
strengthened to the extent that there is good evidence that enough of the
potentially relevant causal factors (even if unknown) have been physically
or statistically controlled.

For the same reason, randomization within the study design strengthens
the warrant for causal inference. If the subjects in the study are assigned to
the test or control groups by a truly random method, then this combats any
potential for bias or confounding that might result from the process of group
assignment.'® The rationale parallels that for random sampling. Through
random sampling, researchers try to eliminate any statistical association
between sample statistics and any factor that might have influenced sample
selection. Through randomization, they try to eliminate any statistical asso-
ciation between the outcome variable and any factor that might have influ-
enced group assignment. Randomization becomes especially important if
the assignment process could be influenced by any feature of the individual
subjects that is also causally relevant to the variables being studied. The
same reasoning supports the desirability of blind studies, in which research-
ers conducting measurements or performing other actions in connection
with the study do not know which subiects are in which study groups. If
those conducting the study were to know the group assignment, this knowl-
edge might influence how they take measurements or perform other tasks,
and such knowledge might causally influence the reported results. In other
words, randomization and blind protocols are designed to keep researchers
from introducing any confounding causal influences. If randomization and
blind protocols are not used, then the added causal uncertainty about con-
founding design will weaken the warrant for any causal conclusions based
on the study results.

But the fact that randomization can eliminate one source of bias does
not mean that it eliminates all sources of bias. Even with randomization,
there is no guarantee that the groups are comparable to each other or to the
population on all causally relevant factors: this depends on the complexity

184.  LILIENFELD & LILIENFELD, supra note 53, at 257; Lavori et al., supra noie 99, at 61-69. Ran-
domization is sometimes extolled as the near-panacea for eliminating inference problems due to con-
founding variables or non-comparability between the experimental group and the control group. For
example, Bland states that if we randomize, “[tJhe only differences beiween the groups will be those due
to chance. . . . Any difference between the groups which is larger than [the likely effects of chance] is
likely to be due io the treatment, since there will be no other differences between the groups.” BLAND,
supra note 65, at 8-9. As another example, Lilienfeld & Lilienfeld state:
The cpidemiologist can achieve comparability [between the experimental and control groups]
on factors that are known to have an influence on the outcome, such as age, sex, race, or se-
verity of disease, by matching for these factors. But one cannot match individuals for factors
whose influence is not known or cannot be measured. This problem can be resolved by the
random allocation of individuals to the experimental and control groups, which assures the
comparability of these groups with respect to all facters—known and unknown, measurable
and not measurable—except for the one being studied.
LILIENFELD & LILIENFELD, supra note 53, at 257.
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of the underlying causal process, the prevalence of relevant causal factors
within the population, and the adequacy of the sampling.'®’ Before drawing
an inference of specific causation, the factfinder will face the decision
whether the study design (including physical controls, random sampling,
randomization, and model specification) warrants the conclusion that any
residual uncertainty about causal completeness is acceptable. The residual
risk of unknown confounding factors must be acceptable for the purposes of
tort law.

After completeness of the causal model, a second major factor affecting
the weight of evidence on causation is the strength of the statistical associa-
tion itself, or the degree to which the outcome variable varies with the input
variable.'®® The strength of association can be measured by the magnitude
of the relative risk or of the correlation coefficient. Using current scientific
conventions, random sampling uncertainty alone is within acceptable limits
if the strength of association clears the threshold of statistical significance.
Beyond that threshold, however, associations that are statistically significant
can still vary in strength, and the stronger the association, the more likely it
is that there is some underlying causal relationship. A very strong associa-
tion makes it less likely that unknown but causally relevant variables would
explain away the association if only they were taken into account.'"™” In the
terminology of regression analysis, as the population correlation coefficient
approaches one, the predictive power of the independent variable increases
and the residual scatter of predictive error approaches zero. If the population
correlation coefficient were ever equal to one, then the independent variable
would be a perfectly accurate predictor for the dependent variable. As the
correlation coefficient approaches one, therefore, at least in large samples, it
is less likely that the addition of a new independent variable to the model
would make that correlation disappear altogether.

The mechanistic ideal is to predict outcomes accurately and completely
and to control the occurrence of events, at least under experimental condi-
tions. With relatively closed causal systems and completely specified causal
models, such as a kinetic model for balls on a billiard table, it may be possi-
ble to predict and explain nearly all variability in events. It is often possible
in law, when dealing with macro events, to approximate a mechanistic ex-
planation, for which a set of input conditions completely determines the

185. See COLIN HOWSON & PETER URBACH, SCIENTIFIC REASONING 143, 152 (1989)
(“{R]andomization cannot possibly guarantee that the [experimental] groups will be free from bias by
unknown nuisance factors™).

186.  See Proposed Guidelines for Carcinogen Risk Assessment, 61 Fed. Reg. at 17,974; HENNEKENS
& BURING, supra note 99, at 39-40; LILIENFELD & LILIENFELD, supra note 53, at 300-02; Green et al,,
supra note 6, at 376-77; see also JOHN STUART MILL, A SYSTEM OF LOGIC 260-63 (Longmans, Green &
Co., 8th ed. 1900) (1843) (discussing the method of concomitant variation).

187.  E.g., Shapiro, supra note 178, at 939 (concluding that “if an association is of rclatively low
magnitude (defined here as a relative risk estimate of less than 2.0), it may not be possible to judge
whether or not it can be entirely accounted for by bias,” as opposed to causation due to exposure), Herz-
Picciotto, supra note 178, at 947 (arguing that causal inferences should draw upon more than the magni-
tude of association, and urging that hypotheses of bias be evaluated just like other causal hypotheses).

HeinOnline -- 56 Ala. L. Rev. 430 2004-2005



2004] Restoring the Individual Plaintiff to Tort Law 431

outcome events. For example, hard metal objects moving with high energy
can seriously injure unprotected human bodies through impact. Increas-
ingly, however, factfinders in tort cases must decide general causation
within open-ended causal systems, within incomplete causal models, and
with a great deal of individual variability that the available model cannot
explain. It is not reasonable to expect every causal model to display any-
thing approaching a perfect correlation or to be causally complete. Fortu-
nately, warranted factfinding is possible without having a complete, mecha-
nistic explanation. Other things being equal, the higher the strength of asso-
ciation in a given study and the smaller the amount of residual unexplained
variability, the greater the warrant for a causal conclusion. Once the weight
of all of the evidence on causation reaches an acceptable level (given the
legal context), then a conclusion of causation may be warranted even if the
strength of association is relatively low.

The third major factor that can strengthen a causal inference is consis-
tency of results among multiple studies.'®® If an observed association ap-
pears consistently in different studies by different investigators with differ-
ent samples drawn from diverse populations, then it becomes far more
likely that there is an underlying causal process producing that association.
It is less likely that the observed association is coincidental, or that con-
founding factors explain the results. At the same time, lack of consistency
among well-conducted studies may suggest that the association occurred by
chance (however unlikely that was) or that other variables causally explain
the observed association. If statistical results are inconsistent, then there
should be a causal explanation for the inconsistency. Thus, replicating a
suggestive lead study or conducting follow-up studies is often a high prior-
ity in science, because those studies can contribute substantially to the war-
rant for causal conclusions.

Finally, the degree of warrant for a causal connection depends upon the
physical and biological plausibility of the causal model, including temporal
directionality from the cause to the effect. A proposed causal model must be
scientifically plausible from the standpoint of other well-founded causal
theories and principles, as well as our general experience.'® In epidemiol-
ogy and toxicology, for example, the weight of evidence for a causal rela-
tionship between exposure and response variables increases if there is a
plausible mechanism for the causal action and the causal theory is consistent

188.  Proposed Guidelines for Carcinogen Risk Assessment, 61 Fed. Reg. at 17,974; HENNEKENS &
BURING, supra note 99, at 41-42; LILIENFELD & LILIENFELD, supra note 53, at 298-300; Green et al.,
supra note 6, at 377-78.

189.  The role of theory remains paramount even when empirical studies are available, for statistical
analyses of data are not sufficient to determine whether a model is adequately specified. For example, a
low R? does not necessarily mean that a causally relevant variable has been omitted from the model. The
R? may also be low due to measurement error or due to the form of the model selected. See BERRY &
FELDMAN, supra note 113, at 25, Second, although statistical tests are helpful in identifving included but
seemingly irrelevant variables, if those variables have theoretical relevance they should be removed only
with great caution. See id. at 25-26; WONNACOTT & WONNACOTT, supra note 60, at 408-09.
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with accepted theories of pharmacokinetics and metabolism.””® The evi-
dence for causation is also stronger if there is a dose-response relationship
between the variables that is positive and mechanistically plausible under
the circumstances.'”’ Beyond being consistent with the data used to support
it, a causal model must also be plausible given other scientific theories
about the underlying phenomenon.

An essential aspect of causal plausibility is the requirement that a cause
must precede its effect in time, with enough time intervening to allow a
causal mechanism to produce the result.'” Disregarding the temporal direc-
tionality of causation can also lead to serious inferential errors about prob-
ability of occurrence. Calculating probabilities of occurrence accurately
becomes especially critical when the risk estimate for general causation
plays a warranting role in direct inference to specific causation. The condi-
tional probability of B given A (“Prob(B|A)”) quantifies the likelihood that
B will occur once A occurs. “Forward” conditional probabilities condition
events that occur later in time on events that occur earlier in time.'*” In Fig-
ure 4, in which the arrows indicate both the direction of time and the direc-
tion of causal influence, the probability of B given A and the probability of
E given B (“Prob(E|B)”) are examples of forward conditional probabili-
ties.'” For example, diagnostic tests are designed so that a pre-existing con-
dition causes some positive test result to occur. Two forward conditional
probabilities that help characterize important uncertainties for a diagnostic
test are its sensitivity and specificity."” The sensitivity of a diagnostic test
(such as a medical test) is the proportion of all affected individuals (those
who have some condition or characteristic) who correctly test positive (the
“true positive rate”). An affected person who receives a negative result on
the test has a “false negative” result. The specificity of a test is the propor-

190.  See Proposed Guidelines for Carcinogen Risk Assessment, 61 Fed. Reg. at 17,975; HENNEKENS
& BURING, supra note 99, at 40-41; LILIENFELD & LILIENFELD, supra note 53, at 297-98, 315-16; Green
et al., supra note 6, at 378.

191.  See Proposed Guidelines for Carcinogen Risk Assessment, 61 Fed. Reg. at 17,974; HENNEKENS
& BURING, supra note 9, at 43; LILIENFELD & LILIENFELD, supra note 53, at 309-15; Green et al., supra
note 6, at 377.

192.  See DAVID HUME, A TREATISE ON HUMAN NATURE 467 (T.H. Green & T.H. Grose eds., Long-
mans, Green & Co. 1874) (1738) (discussing Rule 2 for determining cause-and-effect: *“The cause must
be prior to the effect.”). See Regulations Restricting the Sale and Distribution of Cigarettes and Smoke-
less Tobacco to Protect Children and Adolescents, 61 Fed. Reg. 44,396, 44,476 (Aug. 28, 1996); Pro-
posed Guidelines for Carcinogen Risk Assessment, 61 Fed. Reg. at 17,974; Davis, supra note 175, at
11-16; HENNEKENS & BURING, supra note 99, at 42-43; KENNY, supra note 175, at 2-3; Green et al,,
supra note 6, at 376.

193, For a similar use of the terms “forward” and “backward,” see NORMAN ABRAMSON,
INFORMATION THEORY AND CODING 99 (1963).

194,  For discussions of path analysis, which places the results of a multiple regression analysis in a
form conducive to a causal interpretation, sce COHEN & COHEN, supra note 31, at 79-123, 353-78;
Davis, supra note 175, at 7-69; KENNY, supra note 175, at 22-44; LOETHER & MCTAVISH, supra note
27, at 338-43; and WONNACOTT & WONNACOTT, supra note 60, at 396-433. On the theory of causal
modeling generally, see JUDEA PEARL, CAUSALITY: MODELS, REASONING, AND INFERENCE (2000); and
GLENN SHAFER, THE ART OF CAUSAL CONJECTURE (1996).

195.  See FINKELSTEIN & LEVIN, supra note 34, at 82; KASSIRER & KOPELMAN, supra note 10, at 18-
22; Henifin et al., supra note 180, at 465-67.
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tion of all unaffected individuals who correctly test negative on the test (the
“true negative rate™). They do not have the condition and are correctly diag-
nosed or classified as not having it. A person who does not have the condi-
tion but receives a positive result on the test constitutes a “false positive.”
Sensitivity and specificity together are the “operating characteristics’ of the
test, and do not depend on the prevalence rate of the condition in the popu-
lation.'®® Sensitivity and specificity reflect the forward conditional prob-
abilities of the test results given the input condition.'”’

FIGURE 4
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“Backward” conditional probabilities quantify the probability that a
type of event occurred earlier in time given that a type of event occurs later
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196,  FINKELSTEIN & LEVIN, supra note 34, at 82,

197. It is sometimes said that a factor affecting weight is the “degree of specificity” between a causal
variable and an effect variable. If an association is “highly specific” in this sense, then the input variable
is associated only (or mostly) with a particular output variable, and the input-output relationship has a
high “true negative rate.” See LILIENFELD & LILIENFELD, supra note 53, at 302; Green et al., supra note
6, at 379. An association is more likely to have a causal basis if the exposure is associated only with a
single type of disease or outcome. Green et al., supra note 6, at 379. The reason for thinking that highly
specific associations are indicative of causation is that “[t]he vast majority of agents do not cause a wide
variety of effects.” /d.

This generalization is related to the notion that a diagnostic test for a disease is highly specific if
it has a high rate of detection for “true negatives,” meaning that a high proportion of all individuals who
do not have the disease fail to cause a positive result on the test and therefore correctly test negative for
the disease. The specificity of the test “is defined as the percent of those who do not have the disease and
are so indicated by the test.” LILIENFELD & LILIENFELD, supra note 53, at 150-51. By comparison,
sensitivity “is defined as the percent of those who have the disease, and are so indicated by the test.” Jd.;
HENNEKENS & BURING, supra note 99, at 331-35, In complex causal systems, specificity should not be
demanded, or even expected. When specificity is in fact high, however, it can strengthen the case for
causation.

HeinOnline -- 56 Ala. L. Rev. 433 2004-2005



434 Alabama Law Review [Vol. 56:2:381

in time. A backward conditional probability uses the occurrence of the ef-
fect as evidence of the prior occurrence of the cause. In Figure 4, Prob(C|E)
is an example of a backward conditional probability. The formula for com-
puting values for backward conditional probabilities is Bayes’ Theorem,'*®
which can be written as:

Prob(C) x Prob(E|C)

Prob(C|E) = )
Prob(E)

in which C is the (earlier) cause and FE is the (later) effect. The occurrence
of E is some evidence that C had occurred earlier in time. The conditional
probability Prob(C|E) is called the “posterior probability” of C conditioned
on E, or the probability of C after taking the occurrence of E into account. Tt
expresses the expected relative frequency for a prior occurrence of C, given
that E occurs.'” Although there are many controversies over the proper
interpretation and use of Bayes’ Theorem,”” the theorem itself is undoubt-
edly deducible within the probability calculus.”'

198.  For discussions of Bayes’ Theorem, see C.G.G. AITKEN, STATISTICS AND THE EVALUATION OF
EVIDENCE FOR FORENSIC SCIENTISTS 31-56 (1995); L. JONATHAN COHEN, AN INTRODUCTION TO THE
PHILOSOPHY OF INDUCTION AND PROBABILITY (1989), §§% 3, 9, 19; MICHAEL O. FINKELSTEIN,
QUANTITATIVE METHODS IN LAW: STUDIES IN THE APPLICATION OF MATHEMATICAL PROBABILITY AND
STATISTICS TO LEGAL PROBLEMS 87-89 (1978), GOLDBERG, supra note 13, at 38-48; ALVIN L
GOLDMAN, KNOWLEDGE IN A SOCIAL WORLD 109-30 (1999); HOwWSON & URBACH, supra note 185;
GUDMUND R. IVERSEN, BAYESIAN STATISTICAL INFERENCE (1984); JOSEPH B. KADANE & DAVID A.
SCHUM, A PROBABILISTIC ANALYSIS OF THE SACCO AND VANZETTI EVIDENCE (1996); HENRY E.
KYBURG, JR., PROBABILITY AND INDUCTIVE LOGIC 19-20, 68-74 (1970) [hereinafter PROBABILITY AND
INDUCTIVE LOGIC]; POLLOCK & CRUZ, supra note 16, at 92-119; DAVID A. SCHUM, THE EVIDENTIAL
FOUNDATIONS OF PROBABILISTIC REASONING 41-54, 213-222 (1994); Lea Brilmayer & Lewis Komn-
hauser, Review: Quanirirarive Methods and Legal Decisions, 46 U. CHI. L. REV. 116 (1978); Richard D.
Friedman, Assessing Evidence, 94 MICH. L. REv. 1810 (1996); David Kaye, Probability Theory Meets
Res Ipsa Loquitur, 77 MICH. L. REV. 1456 (1979) [hereinafter Probability Theorv]; D. H. Kaye, What Is
Bayesianism?: A Guide for the Perplexed, 28 JURIMETRICS J. 161 (1988); Richard O. Lempen, Modeling
Relevance, 75 MICH. L. REV, 1021 (1977) [hereinafter Modeling Relevance]; Richard O. Lempert, The
New Evidence Scholarship: Analyzing the Process of Proof, 66 B.U. L. REV. 439 (1986) [hereinafter
Evidence Scholarship); Statistical Approaches, Probability Interpretations, and the Quantification of
Standards of Proof, THE EVOLVING ROLE OF STATISTICAL ASSESSMENTS AS EVIDENCE IN THE COURTS,
191-205 (Stephen E. Fienberg ed., 1989); Laurence H. Tribe, Trial by Mathematics: Precision and
Ritual in the Legal Process, 84 HARV. L. REV. 1329 (1971) [hereinafter Trial by Mathematics]; and Vemn
R. Walker, Language, Meaning, and Warrant: An Essay on the Use of Bayesian Probability Systems in
Legal Factfinding, 39 JURIMETRICS J. 391, 397-404 (1999).

199.  FINKELSTEIN & LEVIN, supra note 34, at 75-81.

200. The debate over the application of Bayes’ Theorem has been vigorous among legal scholars.
Representative of this debate are: Ronald 1. Allen, The Nature of Juridical Proof, 13 CARDOZO L. REV.
373 (1991); Ronald J. Allen, A Reconceptualization of Civil Trials, 66 B.U. L. REV. 401, 401-15 (1986);
Lea Brilmayer, Second-Order Evidence and Bayesian Logic, 66 B.U. L. REvV. 673 (1986); Craig R.
Callen, Kicking Rocks with Dr. Johnson: A Comment on Professor Allen’s Theory, 13 CARDOZO L. REv.
423 (1991); David L. Faigman & A. J. Baglioni, Ir., Bayes’ Theorem in the Trial Process: Instructing
Jurors on the Value of Statistical Evidence, 12 LAW & HUM. BEHAV. 1 (1988); Stephen E. Fienberg,
Gatecrashers, Blue Buses, and the Bayesian Representation of Legal Evidence, 66 B.U. L. REv. 693
(1986); Edward Gerjuoy, The Relevance of Probability Theory 10 Problems of Relevance, 18
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Having a warranted value for Prob(C|E) depends upon having war-
ranted values for the three probabilities on the right-hand side of the equa-
tion. First, the conditional probability Prob(E|C) is the forward probability
that E will occur given that C occurs (conditional on C’s occurring). This is
often called the “likelihood” of E given C.2 The existence of a non-zero
value for the likelihood Prob(E|C) is warranted by the evidence that there is
a general causal relationship running from C to E. Any particular value as-
signed to Prob(E|C) can be warranted by a partial correlation coefficient in
an adequately specified regression model, subject to the types of uncertainty
discussed in previous sections of this Article. Second, if adequate studies
are available, the prevalence of C and E, or the relative frequencies with
which they occur in the population, may be used to estimate the uncondi-
tioned probabilities Prob(C) and Prob(E). The probability Prob(C) is called
the “prior probability” of C, determined without taking E into account. The
unconditioned probability Prob(E) is the probability that the effect E will
occur at all, through all possible causal sequences.’”

The example of a diagnostic test illustrates Bayes’ Theorem and the im-
portance of prevalence in calculating backward conditional probabilities. As
stated just above, the sensitivity and specificity of a diagnostic test are for-
ward conditional probabilities. Using test results as the basis for diagnosing
the test subject’s condition that caused those results, however, requires

JURIMETRICS J. 1, 9-28 (1977); John Kaplan, Decision Theory and the Factfinding Process, 20 STAN. L.
REv. 1065, 1083-91 (1968); D. H. Kaye, The Probability of an Ultimate Issue: The Strange Cases of
Paternity Testing, 75 Towa L. REV. 75 (1989); Evidence Scholarship, supra note 198; and Glanville
Williams, The Mathematics of Proof—II, 1979 CRiM. L. REv. 340, 340-50 (1979).

For arguments on the usefulness of Bayes’ Theorem in legal decisionmaking, see GOLDBERG,
supra note 13, at 38-48; Michacl O. Finkelstein & William B. Fairley, A Bayesian Approach to ldentifi-
cation Evidence, 83 HARV. L. REV. 489 {1970) [hereinafter Bayesian Approach]; Michael Q. Finkelstein
& William B. Fairley, The Continuing Debate over Mathematics in the Law of Evidence: A Comment on
“Trial by Mathematics,” 84 HARV. L. REv. 1801 (1971); Probability Theory, supra note 198; David
Kaye, The Paradox of the Gatecrasher and Other Stories, 1979 ARIZ. ST. LJ. 101 (1979); Jonathan J.
Koehler & Daniel Shaviro, Veridical Verdicts: Increasing Verdict Accuracy Through the Use of Overtly
Probabilistic Evidence and Methods, 75 CORNELL L. REV. 247 (1990); Daniel J. Komnstein, A Bayesian
Model of Harmless Error, 5 J. LEGAL STUD. 121 (1976); and Modeling Relevance, supra note 198.

For arguments against at least certain uses of Bayesian analysis in a legal context, see L.
JONATHAN COHEN, THE PROBABLE AND THE PROVABLE (1977) [herinafter THE PROBABLE AND THE
PROVABLE]; Brilmayer & Kornhauser, supra note 198; Craig R. Callen, Notes on a Grand Illusion:
Some Limirs on the Use of Bayesian Theory in Evidence Law, 57 IND. L.J. 1 (1982); L. Jonathan Cohen,
The Logic of Proof, 1980 CRIM. L. REV. 91; Laurence H. Tribe, A Further Critique of Mathematical
Proaf, 84 HARV. L, REV. 1810 (1971); and Trial by Mathematics, supra note 198.

201,  E.g.. FINKELSTEIN, supra note 198, at 87-89; PROBABILITY AND INDUCTIVE LOGIC, supra note
198, at 19-20: Bayesian Approach, supra note 200, at 498-99; Probability Theory, supra note 198, at
1468-71; Trial by Mathematics, supra note 198, at 1351-53; Walker, supra note 18, at 265 n.40.
202. KADANE & SCHUM, supra note 198, at 122-26; SCHUM, supra note 198, at 49-50, 146, 218-22.
203.  See, e.g., FINKELSTEIN & LEVIN, supra note 34, at 75-81. Relative to only a single causal event
C»

Prob(E) = Prob(E|C) Prob(C) + Prob(E|not-C) Prob{not-C),
where Prob(E|noi-C) is the probability that E will occur given that C does not occur. See id. Prob(E) is a
function of all of the forward conditional probabilities leading to E, each weighted by the probability
that the corresponding causal sequence will occur. It is therefore equal to the sum of Prob(E|C) and
Prob(Elnot-C), where Prob(E|not-C) is the total probability that E will occur as the result of any causal
sequence in which C does not occur.
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backward conditional probabilities, or the “predictive values” of the test.”*
The positive predictive value is the proportion of individuals who test posi-
tive that truly have the condition or characteristic.2” The negative predictive
value is the proportion who test negative that truly do not have the condi-
tion.”®® While sensitivity and specificity do not depend on the prevalence or
rate of occurrence of the condition in the population, the predictive values
of the test do. For example, for a test with sensitivity and specificity each
equal to 99%, the probability that a person who tests positive is actually
affected is one-half when the prevalence of the condition in the population
is one per 100—that is, among all those with positive results on the test,
50% are expected to have the condition.””” This is because those who do not
have the condition are ninety-nine times more numerous than those who do
have the condition, and those without the condition still test positive about
one time in 100.”® For a prevalence of one per 1000, however, the positive
predictive value of the test falls to about 9%.°%”

In sum, the above factors—namely, model completeness, strength of as-
sociation, consistency among studies, scientific plausibility and temporal
directionality—all affect the weight of evidence for a general causal rela-
tionship between two variables. They also reflect the human desire for a
single causal account of reality. The causal ideal is a single causal model for
the entire universe, which would explain everything that occurs, and we

204. Id. at 82-83.
205.  Id. at 82 (defining the “[plositive predictive value” as “the proportion of all test-positive people
who are truly affected”).
206.  Id. at 83 (defining the “[nlegative predictive value” as “the proportion of all test-negative people
who are truly unaffected”).
207.  See id. at 82-83 (calculating the odds of being affected given a positive test outcome). If C+ =
the condition of being affected, not-C+ = the condition of being unaffected, and E+ = the event of hav-
ing a positive test result, then the odds on being truly affected given a positive test result are:
Prob(C+|E+) Prob(E+|C+) Prob(C+)
= X
Prob(not-C+|E+) Prob{E+|not-C+) Prob(not-C+)
The odds on being truly affected given a positive test result also equal:
(Sensitivity / 1 — Specificity) Prevalence Odds,
where the Prevalence Odds = Prob(C+)/Prob (not-C+). See id. at 83,
208. Bayes’ Theorem shows how prevalence comes into play in both Prob(C) and Prob(E), the
unconditioned rates of occurrence in the population. If the probability of testing positive is Prob(E+) and
the probability of being affected by the condition is Prob(C+), then the conditional probability of having
the condition if the patient tests positive on the diagnostic test is Prob(C+|E+). The sensitivity of the test
is the forward conditional probability Prob(E+|C+) = 0.99. The prevalence of the condition is Prob(C+)
= 0.01. The numerator of Bayes” Theorem is therefore Prob(C+) Prob{E+|C+) = (0.01)(0.99) = 0.0099.
The denominator is Prob(E+) = Prob(E+|C+) Prob(C+) + Prob(E+|not-C+) Prob(not-C+). Supra note
203. The first term in the denominator sum is the same as the numerator. The latter term in the denomi-
nator equals the product of the conditional probability of a positive test result for an unaffected patient
without the condition (that is, one minus the specificity of the test, or 7 — 0.99 = 0.01) and the prevalence
of unaffected people in the population (that is, / — 0.01 = 0.99). Therefore, the denominator Prob(E+) =
(0.99)(0.01) + (0.01 )(0.99), which is twice the numerator (0.01 ){0.99). The probability of being affected
given a positive test result is therefore 1/2.
209. A comparable calculation to that in note 208 shows how the positive predictive value falls o
about 9% for a prevalence of one per 1000. With the forward conditional probabilities for sensitivity and
specificity remaining at 0.99, and the prevalence of the condition (Preb(C+)) falling to 0.001, the calcu-
lation for Bayes” Thecrem becomes Prob(C+|E+) = (0.001)(0.99) / (0.99)(0.001) + (0.01)(0.999} =
0.00099 / (0.00099 + 0.00999) = 0.00099 / 0.01098 = about 9%.
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therefore expect all valid causal models to cohere with each other. In the
unified causal account of reality, we expect completeness, consistency, and
coherence: all phenomena must be explained, all studies must have consis-
tent results, and all theories must fit nicely together. Causal generalizations
must support law-like (“nomic”) probabilities, which provide explanations
as well as predictions.210 We expect causal models to explain not only why
individuals are similar (why the data have the central tendency they do), but
also why individuals are different from each other (why the data show the
variability that they do). Complete causal explanations would explain the
variability found in identifiable subgroups of cases, and would explain the
differences among individual cases. It is the concept of causation, applica-
ble to every individual case, that warrants inferences from statistics about
groups to conclusions about individual members of those groups. A model
that is truly causal—and not merely statistical—explains events in every
individual case, and every individual deviation from a generic prediction
deserves a causal explanation.

II. UNCERTAINTIES AND WARRANT IN APPLYING THE
GENERALIZATION TO THE INDIVIDUAL PLAINTIFF

This part of the Article analyzes two additional uncertainties introduced
by using a major statistical premise to draw a probabilistic conclusion about
a specific member of the reference group. That is, an assertion about a gen-
eral causal relationship connecting two variables may have acceptable un-
certainty considered as a stand-alone assertion, but the assertion may be less
acceptable when it is used to draw a direct inference in a particular tort case.
The first section discusses the problem of identifying the appropriate group
to serve as the reference group A. It examines the warrant for finding that
any particular reference group (such as women over age forty, who have no
history of cancer in the immediate family) adequately represents the specific
plaintiff in all causally relevant variables. It also discusses what “adequately
represents” means in this context. The second section addresses the addi-
tional uncertainty introduced by finding a probability that a specific member
of A is also a member of a subgroup B. Therefore, the two major sources of
additional uncertainty in drawing the direct inference are (1) identifying a
sufficiently representative reference group for the specific plaintiff, and (2)
using statistical evidence about that reference group to assign a probability
for classifying that specific plaintiff.”"’

210.  See POLLOCK, supra note 14, at 32-38, 42-43, 81-86, 132-40; Walker, supra note 18, at 286-89.
In order to justify direct inference, the indefinite probability that forms the evidentiary basis for the
inference must be a “nomic probability,” or a “law” that supports counterfactual assertions about what
would be the case in alternative possible warlds. See POLLOCK, supra note 14, at 32-38, 4243, 81-86,
132-40.

211.  For the logical literature discussing formal, technical approaches to the problem of identifying
the reference class, see REICHENBACH, supra note 12, at 372-78 (approaching the problem of the refer-
ence class by considering “the narrowest class for which reliable statistics can be compiled”); Levi,
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The following hypothetical illustrates a typical direct inference to spe-
cific causation. Assume that scientific research warrants the finding that
exposure to a particular chemical has a causal link to a certain kind of can-
cer in humans. Assume further that there are studies with acceptable meas-
urement, sampling, modeling, and causal uncertainty that show that the
baseline risk of the cancer in the general population is about four percent
and that a particular degree of exposure to the chemical can cause the cancer
in an additional six percent of exposures (the attributable risk).>'> That is,
ten percent of all people exposed are expected to develop the cancer, al-
though four percent of them would have developed the cancer even in the
absence of exposure. There is additional evidence supporting the causal
relevance of other risk factors, such as age, sex, a history of certain other
diseases, and a certain genetic makeup. In addition, there is good evidence
that the known risk factors do not explain all of the variability observed in
actual cases of exposure. Because the causal mechanism linking the expo-
sure to the production of cancerous cells is unknown, there is no explanation
why ninety percent of those exposed do not develop the cancer at all, or
why six percent develop exposure-caused cancer. The question in this part
of the Article is when such warranted statistical findings about groups also
warrant a probabilistic finding of specific causation about a particular mem-
ber of the reference group—for example, a plaintiff named Jessica Jones.

In tort law, the cases that present problems in finding specific causation
fall into two categories. In the first category, prospective specific causation
is the issue. Examples are cases claiming risk or fear of cancer.”"” The plain-
tiff Jessica has been exposed to the chemical but has not yet developed the
cancer. The reference group A consists of people with exposure similar to
Jessica’s, and the legally important subgroup B consists of those who will
develop cancer as a result of the exposure. In the hypothetical above, those
members of A who are also members of B comprise six percent of A. The
second category of tort cases presents the issue of retrospective specific
causation. Not only has Jessica Jones been exposed, but she has also devel-
oped the relevant kind of cancer. The reference group A becomes those who
have been exposed and who later develop cancer, and the legally important
subgroup B is the group of exposure-caused cancer cases.””* In the hypo-

supra note 12 (considering three approaches to selecting reference sets for direct inference); Direct
Inference, supra note 14, at 14, 20 (arguing that direct inferences should always rest on using the “nar-
rowest reference class”); and Kyburg, supra note 12,

212.  On attributable risk, see supra note 110 and accompanying text.

213.  E.g., Pouter v. Firestone Tire and Rubber Co., 863 P.2d 795, 816 (Cal. 1993) (holding that, as a
general rule, in the absence of a present physical injury, a plaintiff can recover damages for fear of future
cancer only if the plaintiff proves, among other things, that “the plaintiff’s fear stems from a knowledge,
corroborated by reliable medical or scientific opinion, that it is more likely than not that the plaintiff will
develop the cancer in the future due to the toxic exposure”); Mauro v. Raymark Indus., Inc., 561 A.2d
257, 264 (N.J. 1989) (allowing darnages for an enhanced risk of developing cancer in the future only if
the plaintiff establishes “the future occurrence of cancer as a reasonable medical probability”).

214.  For technical discussions of models with “latent” or unobservable variables, see JOHN C.
LOEHLIN, LATENT VARIABLE MODELS: AN INTRODUCTION TO FACTOR, PATH, AND STRUCTURAL
ANALYSIS (1998); and PEARL, supra note 194, at 41-64.
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thetical above, the members of A who are also members of B comprise sixty
percent of this refined reference group A. On average, out of every ten peo-
ple who are exposed and later develop the cancer, four are baseline cancer
cases and six have exposure-caused cancer. The question is under what
conditions a reasonable factfinder can use such causal generalizations to
warrant a direct inference about Jessica Jones.,

Beyond the uncertainties inherent in finding the exposure to be causally
relevant to the cancer at all, and inherent in quantifying any increased risk
for those exposed, there are additional uncertainties created by using such
generalizations to make a direct inference. First, there are uncertainties as-
sociated with identifying an appropriate reference group A to represent the
specific plaintiff (“plaintiff-representativeness”). Second, even assuming an
acceptable reference group, there is a potential for error in making an infer-
ence from acceptable statistics for that reference group to a probability for
the particular plaintiff’s situation. The next section addresses the first kind
of uncertainty, while the subsequent section addresses the second kind of
uncertainty.

A. Acceptable Uncertainty About Plaintiff-Representativeness:
Selecting an Adequately Representative Reference Group

In a direct inference, the major premise makes an assertion about a gen-
eral causal relationship between the reference group identified as A and a
subgroup identified as B. 213 It also asserts the relative frequency or propor-
tion of Bs within the reference group A. Using a relative-frequency interpre-
tation of conditional probability, Prob(B|A) refers to the expected relative
frequency with which individuals within the reference group A are also
members of B.”'® Different reference groups provide different denominators
for the ratio B/A, and therefore may warrant different probabilities in the
conclusion.”’”” For example, the probability of exposure-caused cancer (B)
brought about by a particular level of exposure to a certain chemical (E)
may be higher or lower for men taking the drug (M) than for women taking
the drug, and higher or lower for people who have a certain gene (G), or
who have a certain disease in their medical history (D). Different combina-
tions of these characteristics produce different reference groups—for exam-
ple, exposed men with the gene (£ & M & G), exposed men with the back-

215.  The Reference Guide on Epidemiology for federal judges makes a similar point:
However, before an association or relative risk is used to make a statement about the prob-
ability of individual causation, the inferential judgment . . . that the association is truly causal
rather than spurious is required: “[A]n agent cannot be considered to cause the illness of a
specific person unless it is recognized as a causc of that disease in general.”

Green et al., supra note 6, at 383-84 (quoting Philip Cole, Causality in Epidemiology, Health Policy, and

Law, 27 ENVTL. L. REP, 10,279, 10,281 (1997)).

216, See SKYRMS, supra note 20, at 201.

217.  To simplify the symbolism, “B” denotes the subgroup of A that is of interest in the direct infer-

ence. For example, B is not the group characterized simply by developing cancer, but rather the subgroup

of exposed people with exposure-caused cancer.
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ground disease (E & M & D), or exposed women with the gene and the dis-
ease (E & not-M & G & D). In addition, the selection of the reference group
to use may produce different probabilities of occurrence (for example,
Prob(B|C & M & G) = 0.07, Prob(B|C & M & D) = 0.08, Prob(B|E & not-
M &G & D) =0.05)."

For example, in the case of human cancer caused by exposure to car-
cinogens, there can be a high degree of variability in response due to differ-
ent environmental factors and to variability in human susceptibility.”'” Al-
though differences in susceptibility are known to correlate with such factors
as age, sex, race, and ethnicity, the causal reasons are not well understood,
and scientists must estimate “the form and breadth of the distribution of
interindividual variability” by combining data on combinations of particular
factors (a “bottom-up” method) and by using heterogeneity-dynamics mod-
els to explain demographic data (a “top-down” approach).”® Some causal
factors that affect susceptibility are prevalent in the population, while others
are rare.””' Some factors have only marginal effects on relative risk, while
others substantially increase relative risk.*> Some factors play minor roles
in combination with a large number of other genetic, environmental, and
lifestyle influences, with the net result being an essentially continuous, ran-
dom distribution, while other factors or combinations tend to bias suscepti-
bility upwards.223 Some factors in combination might increase risk addi-
tively, while others might increase it multiplicatively.”*

The general problem is providing a criterion for the set of factors that
should define the reference group for the direct inference.””” In a gambling
context, there is prior agreement on the reference group of events—that is,
on what will count as a valid lottery draw or a valid coin toss. In a transpar-

218.  Relative risk would vary as well. As one researcher has stated:
In theory, variation in relative risks with background risk could be examined with epidemi-
ologic data if the data were so extensive and accurate that one could validly estimate variation
in background risk across the myriad subgroups of risk factors (age, sex, occupation, genetic
susceptibility, etc.). Unfortunately, epidemiologic data are rarely so extensive and accurate,
and, as a consequence, they rarely indicate the potential range of variation in relative risks.
Greenland, supra note 110, at 1168.
219.  See NAT'L RESEARCH COUNCIL, supra note 25, at 196-203, 206 (stating that *“[v]anability
affects each step in the carcinogenesis process (e.g., carcinogen uptake and metabolism, DNA damage,
DNA repair and misrepair, cell proliferation, tumor progression, and metastasis)”).
220.  See id. at 200-03, 206-10; Greenland, supra note 110, at 1168 (stating that “epidemiologic data
cannot establish the absence of individuals who are exceptionally vulnerable to exposure cffects and who
constitute a subgroup with an exceptionally high relative risk™); Muin I. Khoury et al., On the Measure-
ment of Susceptibility in Epidemiologic Studies, 129 AM. J. EPIDEMIOLOGY 183 (1989) (analyzing the
complexities of estimating the proportion of persons in a population who are “susceptible” to a risk
factor).
221.  NAT'L RESEARCH COUNCIL, supra note 25, at app. H-2.
222, W
223, Seeid. at 201-02, 206-09 (concluding that “[a] 10-fold [upward) adjustment [of risk] might yield
a reasonable best estimate of the high end of the susceptibility distribution for some potlutants when only
a single predisposing factor divides the population into normal and hypersusceptible people”).
224.  Seeid. at 226-29; Henifin et al., supra note 180, at 476 & n.136.
225.  See ABDUCTIVE INFERENCE COMPUTATION, PHILOSOPHY, TECHNOLOGY, supra note 11, at 27;
PROBABILITY AND INDUCTIVE LOGIC, supra note 198, at 78-82; REICHENBACH, supra note 12, at 372-78.
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ent gambling setup, the probability (expected relative frequency) of each
type of outcome is available equally to all players. Moreover, the gaming
mechanism is calibrated to produce sequences of outcomes that are unbi-
ased with respect to those relative frequencies and which have an acceptable
range of random variation around those relative frequencies. Also, there is
negligible uncertainty about how to classify the individual outcome events
into the categories that determine the payoffs. Too much subjectivity in
declaring the winner could bias the results, assuming self-interested behav-
ior by the referees or judges. In a gambling context, therefore, participants
often try to create and operate a gaming mechanism that ensures that direct
inferences to specific outcome events arc warranted. Put another way, in a
fair and transparent gambling context, the gaming process is designed pre-
cisely to warrant direct inferences to specific outcomes.

In tort litigation, however, such an approach to warrant is not possible.
The causal systems at issue cannot be manipulated to warrant direct infer-
ences, nor can prior agreements precisely identify the reference group and
outcome classes. In particular, it is not the reference group that is a “given,”
but rather the individual plaintiff. In tort cases, the reference group must be
selected to match the plaintiff, not the plaintiff selected to match the refer-
ence group. The task is identifying a reference group that will help explain
the causal connection (if any) between the specific plaintiff and the plain-
tiff’s identified type of injury (such as a particular type of cancer).”?® The
appropriate reference group to use for a direct inference about a specific
individual is a function of which additional characteristics of that individual
are causally relevant to being in subgroup B. As new variables are added to
refine the reference group, the expected relative frequency of exposure-
caused cancer in that group might fluctuate, either increasing or decreas-
ing.”*” If the expected relative frequency of exposure-caused cancers in a
reference group is biased due to confounding causal variables, then any
probability in the conclusion of the direct inference will also be biased.
There may be confounding unless the reference group adequately represents
Jessica on all of the variables that in Jessica’s case are causally relevant to
Jessica’s type of harm. To the extent that a possible reference group does
not adequately represent Jessica’s measurement values on enough of the

226.  For the same degree of exposure, the relative risk may well depend on the nature of the injury.
See, e.g., David A. Freedman & Philip B. Stark, The Swine Flu Vaccine and Guillain-Barre Syndrome:
A Case Study in Relative Risk and Specific Causation, 64 Law & CONTEMP. PROBS. 49, 54-55 (2001)
(for the association between swine flu vaccination and Guillain-Barre syndrome, a data analysis showed
a strong association for cases with extensive paralysis, but little evidence of association for cases with
limited paralysis).

227. See supra notes 112, 160-64, 176-80 and accompanying text; Freedman & Stark, supra note
226, at 54-57 (discussing how, when the data relating swine flu vaccination and Guillain-Barre syn-
drome are “stratiffied] both on time of vaccination and time since vaccination . . . the relative risk for
late-onset cases is well above 2.0”); Goldstein & Henifin, supra note 8, at 422-31 (discussing factors to
consider concerning a “[s]pecific [c]ausal [a]ssociation [bletween an [i]ndividual’s [e]xposure and the
[c]nset of [d)isease”); Henifin et al., supre note 180, at 461-78 (discussing factors to consider in evaluat-
ing causation in a specific case); Daubert v. Merrell Dow Pharm., Inc., 43 F.3d 1311, 1321 n.16 (Sth Cir.
1995) (giving the example of refining a reference group and adjusting the pertinent relative risk).
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causally relevant risk factors, both known and unknown, then those statis-
tics may provide an inaccurate and biased probability for Jessica’s case.”®
The possible reference groups for which statistics happen to be available
may not include the reference group that is appropriate for a direct inference
to Jessica’s case. The adjusted statistics for a more refined reference group,
one that is more representative of Jessica, might be either higher or lower
than the crude relative risk for a group identified without the added vari-
ables.”® A reasonable factfinder must decide whether a proposed reference
group is acceptably representative of the particular plaintiff and whether
uncertainty on this issue is within acceptable bounds.

This notion of “refining” the reference group plays a critical role in the
analysis of direct inference. A crude reference group is refined by adding
causally relevant variables and values of variables that are significant fac-
tors in the particular plaintiff’s case. Refining the reference group to repre-
sent the plaintiff could proceed by creating a reference-group profile for the
plaintiff. The first step in creating such a profile is identifying the variables
that are known or suspected to be causally relevant to the type of injury
relevant in the plaintiff’s case. For example, if the plaintiff Jessica has a
particular type of cancer, then her reference-group profile is a list of all
known or suspected risk factors for that type of cancer. Each assertion of
general causal relevance for any particular risk factor is subject to all of the
inherent uncertainties discussed in Part 1. The next step is classifying or
measuring the plaintiff under the appropriate category for each of the caus-
ally relevant variables. The plaintiff’s combination of values or classifica-
tions for the set of variables is the reference-group profile for the plain-
tiff.>*® That profile then defines or identifies a reference group that is repre-

228.  See Freedman & Stark, supra note 226, at 50, 60-62 (discussing the evidence in a particular
case, and arguing that “the proof of specific causation, starting from a relative risk of four, scems uncon-
vincing” once individuating factors are taken into account).

229. A committee of the National Research Council, in a statutorily mandated review of the EPA’s
carcinogenic risk assessment methods for hazardous air pollutants, urged that a research priority should
be “{tJo explore and elucidate the relationships between variability in each measurable [cancer-
susceptibility] factor (e.g., DNA adduct formation) and variability in susceptibility to carcinogenesis,” so
that the research results could be used “to adjust and refine estimates of risks to individuals (identified,
identifiable, or unidentifiable) and estimates of expected incidence in the general population.” NAT'L
RESEARCH COUNCIL, supra note 25, at 207.

230. It is important to distinguish the causally relevant variable (such as sex, age, or genotype) from
the plaintiff’s value or score in the classification categories of that variable. See, e.g., Siren Songs, supra
note 26, at 574-80. If the variable is sex, then the plaintiff”s classification under that variable might be
“female.” For the variable age, the plaintiff’s value might be “fifty-four” or “fifty to fifty-five,” depend-
ing upon the measurement categories used in the relevant studies. If the variable is genotype, then the
plaintiff’s classification or score might be “negative” on the test for a particular allele.

If a plaintiff’s value on a causally relevant variable is negative, indicating an absence of a caus-
ally relevant event or characteristic, then the refined reference group would include only individuals
who, like the plaintiff, do not have that characteristic. Many commentators and courts conceptualize this
not as selecting a representative reference group, but as “ruling out” or eliminating alternative causes.
See, e.g., Henifin et al., supra note 180, at 468-78 (discussing steps in “[d]etermining external causation”
of a specific individual's medical condition); Sanders & Machal-Fulks, supra note 6, at 122-25 (discuss-
ing judicial rulings conceming “ruling out” possible causes); Alani Golanski, General Causation at a
Crossroads in Toxic Tort Cases, 108 PENN. ST. L. REV. 479, 500-04, 522-23 (2003) (arguing that a
differential diagnosis “is even more likely than an epidemiological study to be accepted as the sole
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sentative of the individual plaintiff relative to the particular type of injury. A
reference-group profile for the plaintiff on exposure-caused cancer of a cer-
tain type, therefore, consists of people with values similar to the plaintiff’s
values on all of the variables that are causally relevant to developing that
type of cancer after an exposure like the plaintiff’s.

The added uncertainty about plaintiff-representativeness, therefore, is
whether the reference group used in the major premise adequately matches
the plaintiff’s reference-group profile. This problem is reminiscent of the
completeness problem of general causation, discussed in Parts 1.C and LD,
but it is not the same problem. The problem of completeness in general cau-
sation is whether taking some confounding variable into account would
affect the statistical significance of a relative risk or partial regression coef-
ficient, or affect the strength of association to such an extent that it would
undermine a finding of general causation. The problem of plaintiff-
representativeness is whether the reference group adequately represents the
plaintiff on enough of the causally relevant variables and has suitable statis-
tics for warranting a direct inference (that is, with acceptable measurement,
sampling, modeling, and causal uncertainty). The reference group A must
both adequately represent the plaintiff and have acceptable measurement,
sampling, modeling, and causal uncertainty in a general causal sense. Of
course, it is possible that the studies that happen to be available do provide
warranted causal statistics for such a plaintiff-representative group, but in
practice this may rarely be true. The available studies seldom have a large
enough sample to support a warranted probability about people like a par-
ticular individual. For example, even a large epidemiologic cancer study
might have too few people like Jessica in the study to provide acceptable
statistical power—that is, too few women of Jessica’s age, genetic makeup,
medical history, and other causally relevant characteristics. Moreover, in
many cases, enough is known about which factors are causally relevant for
the factfinder to conclude that the available statistics are nor plaintiff-
representative. The argument in this Article is that in such cases, any direct

evidence of causation in a case,” and that even when a “valid” differential diagnosis fails to “eliminate
all other causal factors that may have contributed to a plaintiff’s disease,” it should overcome a court’s
“reservations about the admissibility or probativeness of epidemiological studies finding relative risk
ratios greater than 1.0 but not greater than 2.0”); Stevens v. Sec’y of HHS, No. 99-594V, 2001 WL
387418, at *26 (Fed. Cl. Mar. 30, 2001) (proposing and using a requirement that a claim under the
National Vaccine Injury Compensation Program will not be successful unless “petitioners . . . affirma-
tively demonstrate by a preponderance of the evidence that there is no reasonable evidence that an alter-
native etiology is the more probable cause of the alleged injury™).

Courts frequently call this process of ruling out alternative possible causes “differential diagno-
sis” or “differential etiology.” Henifin et al., supra note 180, at 470 n.112; Sanders & Machal-Futks,
supra note 6, at 120-29 (discussing judicial rulings on the admissibility of differential diagnosis testi-
mony); Gary Sloboda, Differential Diagnosis or Distortion?, 35 U.S.F. L. REv. 301, 308-23 (2001)
(surveying federal cases ruling on the admissibility of expert testimony on causation that is based on
differential diagnosis). As explained in this Article, however, this process of considering causes other
than one for which the defendant is respansible is merely one aspect of selecting an acceptably represen-
tative reference group.
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inference at all must rest on non-scientific decisions about the acceptability
of the uncertainty about plaintiff-representativeness.

One extreme position would be that no direct inference is ever war-
ranted unless the statistical generalization takes into account all of the fac-
tors that are causally relevant in the particular plaintiff's case.’' That is, a
direct inference must be based on consideration of the total or complete
evidence that is relevant.”> Of course, if there were a complete list of caus-
ally relevant variables, and if the plaintiff’s values or classifications on
every variable were known, and if that complete reference-group profile
identified a reference group for which a methodologically acceptable study
had taken all of the causally relevant factors and values into account, then
the statistical evidence would warrant a direct inference.” Some causal
processes are in fact so simple, well-known, and stable that generalizations
assigning probabilities of occurrence are warranted. For example, a highly
and acutely poisonous compound may be so disruptive of human metabo-
lism that it is (almost) universally fatal if ingested at a certain dose. Other
causal mechanisms are so well understood that we do not even require em-
pirical support from scientifically designed studies. An example is the in-
ability of humans to survive for very long without oxygen. But, many causal
processes currently at issue in tort cases exhibit substantial, unexplained
variability in outcome, especially in humans. A lifetime of heavy cigarette
smoking, for example, may or may not cause lung cancer in individual
cases, despite the existence of sound evidence of general causation. In such
cases, if courts were to require plaintiffs to produce evidence that meets the
“complete evidence” requirement, then no direct inferences about specific
causation would be warranted. The substantive objectives of tort law could
never be achieved under such a decision rule. In practice, courts consider
many direct inferences sufficiently warranted for legal purposes, even
though the evidence is not known to be complete or is known to be incom-
plete.

An alternative to the “complete evidence” decision rule is to develop a
criterion for comparing the completeness of two alternative reference-group
profiles and then use the more complete profile as the evidentiary basis of
the inference. In this way, there could at least be marginal progress toward
adequacy and a basis for determining which direct inferences are more war-
ranted than others. For example, Reichenbach proposed making the infer-

231.  Pollock posits the “total evidence’™ requirement that a direct inference must take into account
every relevant proposition about the specific individual that the factfinder is warranted in believing. See
POLLOCK & CRUZ, supra note 16, at 98-104; POLLOCK, supra notc 14, at 132-34, 136-37.

232.  SALMON, supra note 16, at 90-91.

233.  Another line of reasoning infers the probable cause by eliminating or *“ruling out” all other
causes, thereby conducting a “differential diagnosis.” See supra note 230. The degree of warrant in such
an inference depends upon the completeness of the list of possible causes. See Susan R. Poulter, Science
and Toxic Torts: Is There a Rational Solution to the Problem of Causation?, 7 HIGH TECH. L.J. 189,
232-35 (1992) (arguing that unless “most causes of the disease in question are known . . . the elimination
of other risk factors would not significantly increase the likelihood that the toxic exposure was the cause
of the plaintiff's disease”); Sanders & Machal-Fulks, supra note 6, at 133-34.
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ence on “the narrowest class for which reliable statistics can be com-
piled. "™ A “narrower” class would be constructed simply by adding more
variables to the profile that decrease the number of individuals who satisfy
the profile. For example, the class of “women over forty years of age who
have a particular gene” is a narrower class than the class of “women over
forty years of age.”

There are several epistemic problems, however, with such a rule. First,
Reichenbach’s rule provides, at best, a purely comparative criterion. A more
complete reference-group profile yields a direct inference that has a higher
degree of warrant than a direct inference has from a less complete reference
group. But even if this is true, such a comparison leaves unsolved the prob-
lem of identifying a minimal threshold that a reference class must cross
before it can warrant a direct inference with acceptable uncertainty. This
“threshold problem” is deciding when the reference-group profile takes into
account sufficient numbers or types of relevant factors, such that the refer-
ence class adequately represents the specific individual and warrants a di-
rect inference. In other words, the threshold problem is deciding when the
reference-group profile contains enough causally relevant variables to war-
rant any direct inference at all. Whether a causal model is adequately repre-
sentative of a particular plaintiff depends upon the degree of reference-
group uncertainty that is acceptable in the particular legal context.

A second epistemnic difficulty with Reichenbach’s rule is that adding
variables that turn out to be causally irrelevant is not always harmless. That
is, merely adding variables to the profile does not always produce more
accurate statistics and more appropriate direct inferences. As discussed in
Part 1.C,” adding variables that are in fact irrelevant to the dependent vari-
able tends to increase the random sampling uncertainty for the variables that
are relevant and may increase the likelihood of Type I errors.

A third difficulty, as Reichenbach recognized, is that “reliable statistics”
are often unavailable when reference groups become narrower.”*® There are
often additional variables that are known to be causally relevant, but their
addition to the profile would define a reference group for which there are no
warranted statistics about risk. So Reichenbach’s rule is little more than a
pragmatic maxim to take into account as many factors as possible, without
outrunning the available statistics that have acceptable uncertainty. Accord-
ing to this rule, whenever adequate data come to an end, the factfinder
should use the last, generally acceptable estimate of risk, even though there
1s good evidence that the estimate is inaccurate in the plaintiff’s case. But if

234.  REICHENBACH, supra note 12, at 374,

235, See supra notes 112, 160-62, 178, 227 and accompanying text.

236.  REICHENBACH, supra note 12, at 375. Even if there is no necessary connection between the size
of the reference group and the acceptability of the statistics for that group, in practice there may be a
correlation. See ABDUCTIVE INFERENCE COMPUTATION, PHILOSOPHY, TECHNOLOGY, supra notc 11, at
27 (stating that “[t]here is almost always a certain arbitrariness about which reference class is chosen as a
base for the probabilities; the larger the reference class, the more reliable the statistics, but the less rele-
vant they are; whereas the more specific the reference class, the more relevant, but the less reliable™).
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Reichenbach’s maxim is used as a rule of decision in tort cases, then avail-
able statistics should always win out over individualized factfinding. The
“statistical individual” would always trump individualized decision-making.
As a factfinding rule, however, it is unclear what the rule’s policy justifica-
tion would be. As argued in Part I, leaving causally relevant variables out of
account creates uncertainty about the stability of any observed relative risk
or partial regression coefficient. Adding a causally relevant variable to the
model could either increase or decrease the prior estimate of relative risk.
When these lessons are applied to a reference group whose function is to
adequately represent a specific plaintiff, then leaving causally relevant vari-
ables out of account undermines the warrant for making any direct infer-
ence. In the context of warranting direct inference, statistics based on an
inadequately representative reference group do not warrant a direct infer-
ence at all. If the reference group “for which reliable statistics can be com-
piled,”® to use Reichenbach’s phrase, is known not to be adequately repre-
sentative of Jessica Jones, then those statistics alone cannot warrant any
direct inference about her.

If the only acceptable statistics about general causation describe a refer-
ence group that is not (or is not known to be) adequately representative of a
particular plaintiff relative to the relevant type of injury, then any justifica-
tion for finding specific causation must rest on substantive policy grounds,
not on logical or epistemic grounds. The issue of specific causation cannot
be purely factual or scientific. This is true regardless of the magnitude of the
relative risk that happens to occur in the available statistics. To the extent
that a reference group is unrepresentative of the plaintiff, no relative risk
estimate based on that group is warranted when applied to the plaintiff.”** A
relative risk of ten is no more warranting than a relative risk of 1.5, unless
there is good evidence that it is also a good estimate of relative risk in a
reference group that is adequately representative. The degree of support for
direct inference is directly related to plaintiff-representativeness, not to the
magnitude of the relative risk estimate for the reference group.” Unless a
finding of plaintiff-representativeness is warranted, then there is no epis-
temic justification for relying on any particular relative risk at all, regardless
of its magnitude. In cases involving substantial uncertainty about plaintiff-
representativeness, any finding of probability about specific causation must
rest on non-epistemic as well as epistemic grounds.

The ideal evidence to support a direct inference about Jessica Jones
would be well-designed studies with subjects and controls matched to her
and her circumstances on all variables that are causally relevant to the out-

237.  REICHENBACH, supra note 12, at 374,

238.  Cf. Freedman & Stark, supra note 226, at 61-62 (concluding, in a case where “the plaintiff is in
crucial detail remarkably unlike the other GBS victims” that were studied, “[e]pidemiologic data cannot
determine the probability of [specific] causation in any meaningful way because of individual differ-
ences”).

239.  The magnitude of the relative risk estimate is, however, one factor among many relevant in
evaluating general causal uncertainty. See supra Part LD.
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come. The possibility of conducting such an ideal study, however, is limited
by time, resources, and politics, as well as by the ethical constraints on hu-
man experimentation. Such an ideal study also faces methodological prob-
lems. While the causal relevance of some variables may be known and the
relevance of others suspected, there may also be good evidence that there
exist many unknown and unstudied causes. Morcover, the factfinder usually
has, or can obtain, a great deal of information about the specific individ-
ual—what the courts call “particularistic evidence.”**® Such evidence may
describe observable physical features, medical factors (such as metabolic
data), behavioral characteristics (such as dietary patterns), personal history
(such as environmental exposures and history of disease), family history
(such as genetics), and so forth. The question is which of this particularistic
evidence is causally relevant to the outcome in the specific case. The answer
to this question is generally unavailable. Considering the extent of human
variability, it is unlikely that the factfinder will have adequate causal evi-
dence on a group of people sufficiently similar to the plaintiff on even
known or suspected causal variables, let alone on unknown causal variables.

A reasonable factfinder must decide whether the residual uncertainty in
selecting a representative reference group is acceptable in the particular tort
case, after evaluating the statistical evidence that is available. But, in law—
as in science and everyday life—factfinders need not always suspend fact-
finding until they have a complete reference-group profile and complete
knowledge of general causal factors, provided they can decide that a causal
model is sufficiently complete and representative for the practical purposes
at hand. With some kinds of phenomena, the unexplained individual vari-
ability may be minimal. With other injuries, experts may determine that a
few causal factors are so dominant in the individual case that refining the
reference group further is unlikely to change the legal finding. In other
situations, the causal understanding may be so incomplete and the individ-
ual variability so pronounced that any direct inference to the specific case
would incur a very high degree of uncertainty. Where along this continuum
of uncertainty the factfinder should draw the line of acceptability must be a
matter of common sense and public policy.”*" When the epistemic ideal of a
completely representative reference group and complete empirical evidence
is unattainable, substantive legal policies might also justify rules allocating
the burden of proving or disproving reference-group acceptability. Once the
plaintiff does the best she reasonably can to reduce reference-group uncer-

240.  See, e.g., In re Joimt E. & S. Dist. Asbestos Litig., 52 F.3d 1124, 1130 (2d Cir. 1995).

241.  Inclinical medicine, a paralle]l problem is deciding whether to treat a patient’s condition using a
diagnosis based on incomplete information or whether to wait pending more tests. See KASSIRER &
KOPELMAN, supra note 10, at 24-27 (stating that ‘t}he trade-offs between the risks and benefits of tests
and treatments are embodied in the threshold concept,” and analyzing medical decision rules for testing
and treating particular patients in a clinical setting). In law, a factfinder’s decision might be influenced
by the likelihood that additional evidence would alter the provisional inferences that rest on the currently
available evidence, and by whether the lack of additional evidence is fairly chargeable to a particular
party in the litigation.
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tainty, there may be good policy reasons to shift away from chasing an unat-
tainable episternic ideal and toward achieving non-epistemic objectives.

B. Acceptable Uncertainty About Assigning a Probability to a
Specific Member of the Reference Group

Even if the reference group in the statistical major premise is refined to
the point where it is acceptably representative of the specific plaintiff, there
will be additional uncertainty in using the statistics about that group as the
basis for assigning a probability to the specific case—at least, as long as the
premise does not assert a universal causal relationship from being A to be-
ing B (that is, “all As are also Bs as a result of being As”).** Even if 90% of
the members of reference group A have characteristic B as a result, this
might not warrant assigning a 0.9 probability to the proposition that a spe-
cific member of A is also a B. This section examines individual-probability
uncertainty, or the residual potential for error in making such an assignment
of probability to a specific plaintiff’s case. One question is whether there is
any epistemic basis at all for warranting a probability assignment to the
individual case.**’

The first, intuitive response might be that this inference problem is no
different than assigning a probability to the next outcome in a game of
chance. Imagine a lottery machine in which a forced air stream mixes light-
weight plastic balls in a chamber until a vacuum mechanism selects one of
them. Suppose there are one hundred colored balls in the lottery machine,
and that six of the balls are red (6%), four are white (4%), and the remainder
yellow (90%), to use the same percentages as in the illustration involving
the plaintiff Jessica Jones. The probability of drawing a red ball on the next
draw is 0.06 if the chance setup gives every individual ball an equal chance
of being drawn. When this condition is met, the probability of drawing a red
ball on the next draw is equal to the proportion of red balls in the lottery
machine. This reasoning employs a “probability-of-selection” warrant for
assigning a probability of occurrence to the next outcome event. It treats the

242.  See Greenland, supra note 110, at 1168-69 (arguing that “{a]ll epidemiologic measures (such as
rate ratios [relative risks] and rate fractions [attributable risks]) reflect only the net impact of exposure on
a population, rather than the total number of persons affected by exposure,” and that the atiributable risk
is not generally equal to the “probability of caugation™); James Robins & Sander Greenland, The Prob-
ability of Causation Under a Stochastic Model for Individual Risk, 45 BIOMETRICS 1125, 1128, 1133,
1134-35 (1989) (arguing that the “probability of causation” in a population is not identifiable from
epidemiologic data in the presence of heterogeneity in background disease risks).

243, Some authors who take a causal approach tc warranting direct inference describe it as an infer-
ence from “indefinite physical probabilities” to “definite probabilities.” See POLLOCK & CRUZ, supra
note 16, at 98-100; POLLOCK, supra note 14, at 20-22 (distinguishing between “indefinite probabilities”
(such as “the probability of ¢ smoker getting lung cancer, or the probability of its raining when we are con-
fronted with a low pressure system of a certain sort’”) and “definite probabilities” (such as “the probability that
Jones will get cancer, or the probability that it will rain tomorrow”)). Others follow Karl Popper in interpret-
ing probabilities as characterizing the “propensities” of objects or types of objects io behave in certain
ways under certain conditions. See, e.g., THE PROBABLE AND THE PROVABLE, supra note 200, at 21-24,
295-309: PROBABILITY AND INDUCTIVE LOGIC, supra note 198, at 46-51; SCIENCE AND REASON, supra
note 20, at 39; POLLOCK, supra note 14, at 23-32; SKYRMS, supra note 20, at 199-205.
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next draw as a sample of one and uses reasoning similar to the rationale
behind sampling theory (discussed in Part I.B). This rationale rests upon
having a warranted probability of selecting an individual or sample from the
reference group.

There are two elements to this type of warrant. First, there must be war-
rant for the proportion or percentage of red balls in the machine. This in-
formation about the group of balls may incur the kinds of statistical uncer-
tainty discussed in Part 1, such as measurement and sampling uncertainties.
Second, there must be warrant for the premise that every individual ball has
an equal chance (or some specified probability) of being selected on the
next draw. Some selection processes might be designed to ensure drawing a
white ball or might happen to be biased in favor of drawing red balls, and so
forth. If nothing is known about the drawing mechanism, then there is no
warrant for assigning a probability of selection. In order for a probability-
of-selection approach to provide warrant, there must be an adequately speci-
fied causal model for the ball-selection process that warrants assigning a
probability to the event of being drawn. Under a probability-of-selection
pattern of warrant, the central issues therefore become: (1) the accuracy of,
and warrant for, the descriptive statistics about the reference group from
which the specific individual is drawn; and (2) the accuracy of, and warrant
for, the probabilities assigned to the causal process of selecting individuals
from this group.

The mathematical probabilities involved in probability-of-selection rea-
soning can be interpreted as expected relative frequencies. On a relative-
frequency interpretation, the finding that “there is a 0.06 probability that the
next ball drawn will be red” is really a statement about the expected relative
frequency of drawing red balls on repeated tries of the same process. If the
individuals in the group have an equal chance of being selected, then the
proportion of individuals of each type in the group is the probability to as-
sign to the next outcome of the selection process. Relative-frequency prob-
abilities treat the selection process as a repeatable procedure, and any pre-
diction of a specific selection event is interpreted as a prediction about the
relative frequencies of the types of selection outcome. This interpretation
works well when applied to gambling strategies because betting on the out-
come events of a gambling mechanism can be a repeatable process. Lottery
machines are designed and calibrated so that the probabilities in the premise
will be acceptably accurate predictions for long series of outcomes. By de-
sign, therefore, there are no predictive factors for the next outcome that can
improve on the probabilities in the premise. The objective behind a fair
gambling game is to have the direct inference about the next event be avail-
able to all players and be the best available prediction for the next outcome.
The direct inference in such a case is warranted by the way the gaming ma-
chine is built and operated, as well as by the relevant statistics on past series
of outcomes.

Factfinders in law can sometimes employ a probability-of-selection ra-
tionale to warrant the last step in a direct inference. The composition of the
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reference group may be known, and the process of selecting members from
that group may have an adequately specified causal model that warrants
assigning forward conditional probabilities to selection events. However,
this rationale may also have limited usefulness for specific causation in
typical tort cases. The evidence in a tort case rarely warrants the finding that
the causal process of selecting plaintiffs from the acceptably representative
reference group is either random or adequately modeled. When an individ-
ual plaintiff files a tort claim, causal factors in the plaintiff’s decision proc-
ess might bias the selection process and introduce uncertainty about con-
founding into the selection process.”* For example, alarming publicity
about an exposure event (such as a chemical release) might be positively
correlated with anxiety in those people potentially exposed, causing an in-
crease in the number of self-reports of subjective symptoms and a willing-
ness to file tort suits claiming damages for emotional distress. Plaintiffs
reporting such symptoms may not be “random draws” from a reference
group identified merely by exposure without attendant publicity ** Al-
though such publicity might introduce bias into plaintiff selection for emo-
tional distress, it might not affect the risk of actually developing cancer.
When courts adopt rules that limit certain types of damages depending on
the level of exposure,”*® they may be reducing the risk of bias in plaintiff
selection. Class action lawsuits can reduce plaintiff-selection uncertainty by
using the reference group A to define the plaintiff class, which avoids selec-
tion bias by including all members of A as potential plaintiffs.**’

An advantage of the probability-of-selection warrant is that it can ignore
the causal model for creating members of the subgroup B. In the probabil-
ity-of-selection rationale, the warrant depends only on the composition of
the reference group and on the process of selection from the reference
group. In the lottery machine example, the process of physically producing
red balls is of no importance in assigning probabilities to selecting red balls.
An important disadvantage, however, of the probability-of-selection ration-
ale is that it may distort the justification behind the legal judgment. The
typical tort case starts with the plaintiff as a given and tries to select an ade-
quately representative reference group and to explain the causal connection
between members of that group and the type of alleged injury. By contrast,

244. A confounding variable in this context would be correlated with both the event of becoming a
plaintiff and the injury claimed in the lawsuit. See supra notes 56, 164, 178 and accompanying text.

245.  Another way to view the problem is that when the alleged injury is emotional distress, then an
adequate causal model for that injury (as opposed to cancer) will include publicity as a relevant causal
factor.

246.  E.g., Mauro, 561 A.2d at 260-67 (allowing damages for emotional distress and the cost of future
medical surveillance, provided the jury finds that the plaintiff sustained an “asbestos-related injury,” but
distinguishing and not allowing damages for an enhanced risk of developing cancer in the future unless
the plaintiff establishes “the future occurrence of cancer as a reasonable medical probability”).

247.  Plaintiffs who “opt out” of the class, however, will still encounter plaintiff-selection uncertainty.
Moreover, a class action might merely defer plaintiff-selection uncertainty to the findings used to award
damages to particular plaintiffs. In a settlement, the negotiated agreement might resolve the issue of
plaintiff-selection uncertainty in a manner negotiated among plaintiffs themselves.

HeinOnline -- 56 Ala. L. Rev. 450 2004-2005



2004] Restoring the Individual Plaintiff to Tort Law 451

the probability-of-selection rationale takes the reference group as a given
and studies the selection of the plaintiff from that group.

One suggested alternative to the probability-of-selection rationale is the
“principle of indifference.”**® The principle of indifference is a decision rule
that assumes that any unmodeled factors that are causally relevant to the
specific individual’s being a member of B are equally likely to be true or
false for that specific individual. According to the principle of indifference,
the factfinder should assume that such factors will offset each other in any
particular case—that is, that unmodeled factors tending to increase the
probability in the conclusion will offset unmodeled factors tending to de-
crease it. Proponents of this rationale, therefore, conclude that all unmod-
eled factors can be justifiably ignored for purposes of the direct inference.

The analysis in Parts I.C and 1.D shows that this is a suspect principle.
First, in general, the addition of a causally relevant factor to the model could
adjust the relative risk either up or down.** Moreover, in many tort cases,
there is positive evidence that using the principle of indifference is unwar-
ranted. A significant amount of residual unexplained variability may dem-
onstrate that the causal model is incompletely specified and that the refer-
ence-group profile for the plaintiff is incomplete. There may also be evi-
dence to identify causally relevant factors in the particular plaintiff’s case,
but inadequate data to determine the magnitude of their causal influence, or
incomplete statistical evidence of the plaintiff’s combination of values on
those factors. For example, there may be sufficient evidence to indicate that
age and a history of diabetes are causally relevant factors for the alleged
injury and that they probably change the relative risk, but insufficient evi-
dence about how much those factors would adjust the relative risk for this
plaintiff.*® Moreover, there may be good evidence that unknown causal
factors exist and that they do make a difference in individual cases. Adopt-
ing the principle of indifference is therefore often a decision simply to ig-
nore the direct-inference problem.” It is also a decision to ignore the very
factors that distinguish one individual from other individuals and may, in
fact, be a policy of indifference toward individual litigants.

248.  See THE PROBABLE AND THE PROVABLE, supra note 200, at 43-47; JOHN MAYNARD KEYNES, A
TREATISE ON PROBABILITY 44 (1948); PORAT & STEIN, supra note 13, at 46-47, 178.

249.  Supra notes 112, 160-64, 176-80, 227 and accompanying text.

250.  For an example of a probabilistic attempt to adjust relative risk on the basis of individuating
causal factors, see Freedman & Stark, supra note 226, at 60-61. That attempt also illustrates the addi-
tional uncertainty that is created.

251. One effect of the policy-based “eggshell skull” rule of tort law (that the defendant “takes the
plaintiff as she finds him,” even if the plaintiff is unusually susceptible to injury) is that the factfinder
need not quantify, for purposes of finding liability, the causal contribution of particular risk factors that
are internal to the plaintiff. See, e.g., DOBBS, supra note 23, § 177, at 433-34; KEETON ET AL., supra
note 23, at 291-92. In calculating damages, however, a jury might deal with the residual epistemic uncer-
tainty very differently after finding the defendant liable than it would have in the liability phase. Indeed,
some judicial rules impose on the defendant the burden of proving that a portion of damages is not
chargeable to the defendant because it is due to a preexisting condition of the plaintiff. See, e.g.,
RESTATEMENT (THIRD) OF TORTS: APPORTIONMENT OF LIABILITY § 26 cmt.h (2000).
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The appropriate solution, however, is to face squarely the logic of direct
inference. There is often residual uncertainty in assigning any particular
probability to a specific member of the reference group, even after deciding
that the uncertainties about general causation and plaintiff-
representativeness are within acceptable bounds. In a particular case, evi-
dence might in fact support using the probability-of-selection rationale or
the principle of indifference, and warrant assigning a probability with ac-
ceptable uncertainty. Whether the conditions of either of those rationales are
sufficiently satisfied for tort purposes will depend on the goals and objec-
tives of tort law. In the absence of such acceptable evidence, however, any
probability assignment must be justified entirely by non-epistemic consid-
erations.

That ultimate decision to use statistics from the reference group to as-
sign a particular probability to the individual case, however, is epistemically
unwarranted unless decisions are made about acceptable uncertainty.
Unless the uncertainties are acceptable for the general causal link between
the exposure variable and the alleged type of injury, unless the reference-
group profile is acceptably complete and the reference group adequately
represents the plaintiff, and unless the measurement, sampling, modeling,
and causal uncertainties are within acceptable bounds for that representative
reference group, there is no warrant for assigning any probability to a par-
ticular plaintiff based on that reference group. If the reference group is ac-
ceptably homogeneous with the plaintiff on enough causally relevant fac-
tors, and the statistical uncertainties are within acceptable bounds, then non-
epistemic policies might support rules or decisions to fill the ultimate infer-
ential gap. Courts are less likely to turn to such policy-based decision rules,
however, if they fail to acknowledge that logical gap.

III. MAKING WARRANTED FINDINGS ABOUT SPECIFIC CAUSATION

Parts 1 and 11 identified the kinds of uncertainty that are logically inher-
ent in any direct inference to a conclusion about specific causation. This
part of the Article develops those elements into a single, coherent approach
for a reasonable factfinder to follow.”? For each kind of uncertainty, a fact-
finder should decide how extensive the residual uncertainty is and whether
that uncertainty is acceptable for the purposes of the tort case. Decisions
about acceptability are necessarily pragmatic. Because they are not purely
factual or scientific, they should be justified by the non-epistemic goals of
tort law.” The first section of this part summarizes the decision structure
for a warranted finding of specific causation. The second section illustrates

252.  For a parallel approach in evidence-based medicine, see supra note L 1.

253.  Even with regard to the uncertainties inherent in findings of general causation (the uncertainties
discussed in Part I), there may be good reasons why courts should not merely adopt scientific conven-
tions. See Carl F. Cranor et al., Judicial Boundary Drawing and the Need for Context-Sensitive Science
in Toxic Torts after Daubert v. Merrell Dow Pharmaceuticals, Inc., 16 VA, ENVTL, L.J. 1, 21-25 (1996)
(discussing epistemological differences between tort law and science).
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the practical implications of this analysis by discussing three types of cases
in which judges have been making logical errors about specific causation.
As a result of this mistaken reasoning, judges have been deciding these
cases in ways that effectively remove the individuality of the plaintiff from
the factfinding. A proper understanding of direct-inference warrant, how-
ever, shows that the solution is to restore the individuality of the plaintiff to
the case through an affirmation of the jury’s role as pragmatic decision-
maker and an insistence on better policy rationales for judicial decision
rules.

A. An Integrated Approach to Decision-Making About
Acceptable Residual Uncertainty

Every direct inference rests upon a major premise about general causa-
tion.** That premise rests in turn upon empirical observations or data. The
data result from classifying individual objects or events into categories of
variables. Measurement uncertainty is the potential for error due to misclas-
sification—that is, the possible error from placing an observed individual
into the wrong category of a variable. As discussed in Part 1.A, distinguish-
ing biased measurement error from unbiased measurement error allows a
reasonable factfinder to deal with the potentials for such errors in different
ways. For example, if measurements are known to be unreliable to some
degree (subject to random error), then taking a sufficiently large sample of
repeat measurements and using an average of those measurements can in-
crease the precision of the measurement. If measurements are known to be
invalid or biased, then there may be some basis for adjusting measurements
before relying upon them. For either kind of measurement uncertainty,
however, a reasonable factfinder must decide whether the residual degrees
of uncertainty are acceptable for the purposes of tort law. If the extent of
reliability and validity is unknown, this is also an uncertainty that should be
taken into account in deciding what inferences to make.

A major premise about general causation rests upon data drawn from a
mere sample of all of the observable cases. As discussed in Part 1.B, sam-
pling uncertainty is the potential for error introduced by using data and sta-
tistics from a sample to warrant generalizations about all objects or events,

254, This Article does not directly engage the argument by some commentators that, for reasons of
policy, plaintiffs should not have to prove general causation (at least in certain types of cases). For such
arguments, see Margaret A. Berger, Eliminating General Causation: Notes Towards a New Theory of
Justice and Toxic Torts, 97 COLUM. L. REV. 2117, 2117 (1997) (arguing for “‘abolishing proof of general
causation’’ in toxic tort cases, because the causation model “is inconsistent with notions of moral respon-
sibility underlying tort law™); and Sloboda, supra note 230, at 302, 315-16, 323 (arguing that eliminating
the general causation requirement and “imposing strict specific causation standards” based on differen-
tial diagnosis could produce “a reliable, useful, and fair standard by which to appraise the admission of
medical and scientific causation evidence in federal courts™). This Article examines the logic of a direct-
inference warrant for specific causation and does not develop arguments based on tort policies. Of
course, it is fair to expect those advocating the elimination of general causation on policy grounds to
explain the logic of warranting specific causation without direct inference and general causation.
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whether past, present, or future. The question is whether an actual sample is
adequately representative of the population that becomes the subject of the
generalization. The distinction between biased and random error applies to
the sampling process as well as to the measurement process. Researchers
may be able to ensure that samples are adequately representative of vari-
ables known to be important in the target population. Moreover, a re-
searcher can use a randomizing procedure to eliminate any causal factors
that could bias the sampling process itself, although such a procedure can-
not guarantee the representativeness of every sample drawn. However, even
if a sampling process were acceptably unbiased, chance alone could still
produce a sample that is to some degree unrepresentative of the target popu-
lation. Statistical significance, statistical power, and confidence intervals
can characterize the residual, random sampling uncertainty. A large and
randomly drawn sample, with statistically significant results, can help war-
rant a finding of general causation. A small sample, however, with low sta-
tistical power and no statistically significant results may possess too much
sampling uncertainty for warranting any finding about general causation. A
reasonable factfinder must decide whether the sampling process is accepta-
bly unbiased, whether the risk of chance variations between the population
and the sample is acceptable, and whether the total sampling uncertainty is
acceptable.

Generalizations about causal influences rest not only on measurements
of single variables for samples of individuals, but also on statistical associa-
tions among variables and categories of individuals. The major premise of a
direct inference of specific causation asserts that some proportion of things
in category A are also in category B as a result of being in category A. It
rests upon evidence that being in category A is statistically associated with
being in category B, and that knowing that an individual is a member of A
increases the accuracy of a prediction that the individual is also a member of
B. For purposes of direct inference to specific causation, the relative risk
statistic is a useful measure of the strength of association between A and B.
When generalized to a population, relative risk estimates the difference in
risk of injury associated with an independent variable (such as exposure).
Regression models can take many independent variables into account, and a
partial regression coefficient of one variable (such as exposure) estimates
the contribution of that variable to the overall model prediction, after the
contributions of all the other independent variables in the model have been
factored in. With each model and set of statistics, however, there are inher-
ent uncertainties due to the modeling. Before relying upon statistical models
in drawing conclusions, the factfinder should first decide whether the uncer-
tainty created by using them is acceptable. One major source of uncertainty
is whether the model takes into account enough of the variables that are
causally relevant for the adverse event. When new variables are taken into
account, statistics such as relative risk or regression coefficients may
change. Another major source of uncertainty is the form of the model used.
If the formal conditions of the model are not sufficiently satisfied, or if the
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model fits the data poorly and leaves a substantial amount of individual
variability unpredicted, then the model statistics may be misleading. Model-
ing error can lead to false predictions and a false conclusion about how be-
ing in category A causally relates to being in category B. A reasonable fact-
finder would evaluate the extent of modeling uncertainty and decide
whether the residual uncertainty is acceptable for the purposes of tort law.

Finally, in order to warrant a conclusion about a general causation con-
nection between A and B, it is not sufficient to conclude that groups of indi-
viduals characterized by A and B are statistically associated. The reasonable
factfinder must add to the statistical model a causal interpretation. Causal
relationships explain why some types of events occur after other types of
events—not simply in the sample of events already observed, but also in the
future and even in possible worlds that may never actually occur. Generali-
zations about a causal relationship between A and B are supported by an
observed association between A and B, provided causal uncertainty is within
acceptable bounds. The weight of evidence for a causal connection is influ-
enced by several considerations. The degree of warrant increases as the sta-
tistical model takes more causally relevant factors into account and thereby
adjusts for potentially confounding variables. The weight of evidence for
causation also increases as the strength of the statistical association in-
creases, as multiple studies produce consistent results, and as a mechanism
of causation becomes more plausible. At a minimum, the temporal direc-
tionality from cause to effect must leave room for a more refined causal
model to elicit a causal mechanism. In sum, a reasonable factfinder must
decide whether the empirical studies and causal model take enough causally
relevant factors into account, so that the relative risk or partial regression
coefficient is sufficiently accurate and stable for legal purposes. Whenever
residual causal uncertainty exists, the factfinder must decide how complete
a model needs to be, or how much support the evidence needs to provide,
before a finding of general causation is warranted in a legal context. In law,
as in everyday life, how much evidentiary support is needed depends upon
what is at stake and how difficult it is to obtain more evidence. Scientists
can provide guidance on how much causal uncertainty there 1s and how
additional research might reduce it, but substantial causal uncertainty is so
pervasive that deciding when it is acceptable is rarely a purely scientific
decision.

The four kinds of uncertainty just discussed (measurement, sampling,
modeling, and causal) are inherent in any major premise that asserts a gen-
eral causal connection between two variables. They are the kinds of uncer-
tainty inherent in any finding that a particular variable is a risk factor for an
injury or disease. They, therefore, necessitate decisions about acceptability
for any finding that any particular variable is causally relevant to variable B.
But a direct inference does not end with a finding of general causation. The
next task for the factfinder is to identify all of the variables known or sus-
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pected to be causally relevant to the plaintiff’s type of injury and to gauge
the extent of unexplained variability due to unknown causes.” The plain-
tiff’s combination of values for all of the causally relevant variables consti-
tutes the reference-group profile, which defines a reference group that is
somewhat representative of the plaintiff.>® The addition of causally relevant
variables to the profile may change the relevant statistics of variables al-
ready in the profile (such as relative risk due to chemical exposure)—both
substantially and in either direction. In many tort cases, the only available
reference group with any statistics at all is known to be incomplete, and the
statistics are known to rest on significant uncertainties. A reasonable fact-
finder must then decide whether the evidentiary warrant for directly infer-
ring specific causation is “good enough” for the purposes of tort law. Decid-
ing to base a direct inference on a particular reference group that is incom-
plete, but which has acceptable uncertainty in its statistics, is a decision that
cannot be purely factual or scientific.

Once the factfinder identifies the most representative group for the par-
ticular plaintiff and decides that the group is representative enough for fact-
finding purposes, the factfinder must construct and evaluate a major premise
for the direct inference using the selected reference group as category A.
That is, the factfinder should evaluate the available statistics for the selected
reference group considering all of the types of general uncertainty discussed
in Part 1. Even if there is adequate scientific evidence to find a general
causal relationship between some type of exposure and the plaintiff’s type
of injury, that does not resolve the issue of acceptable uncertainty for a ref-
erence group that adequately represents the particular plaintiff. The scien-
tific study that is adequate to establish general causation for a particular risk
factor might not provide a reference group that is adequately matched to the
plaintiff on enough causally relevant variables. A warranted direct inference
to specific causation must rest on statistics with acceptable uncertainty for a
plaintiff-representative group.

If a factfinder decides that the reference group adequately represents the
individual plaintiff and that the statistics causally linking that reference
group to subgroup B have acceptable levels of uncertainty, then there is still
uncertainty created by using those statistics as the basis for assigning a
probability to the plaintiff’s injury, as long as the causal model falls short of
establishing a mechanism that completely explains every individual case. In
some cases, information about the plaintiff-selection process might warrant

255.  Many courts have insisted, of course, that the studies offered into evidence must be relevant 1o
the plaintiff’s situation. See, e.g., Merrell Dow Pharm., Inc. v. Havner, 953 S.W.2d 706, 720 (Tex. 1997)
(ruling that “to survive legal sufficiency review,” a “claimant must show that he or she is similar to those
in the studies™). By focusing on the admissibility or sufficiency of the scientific evidence, and not on the
logical structure of the direct inference itself, it is possible to miss the central point that the issue of
specific causalion—given significant uncertainties—can never be entirely scientific, or even entirely
factual.

256.  On the usefulness of causal modeling in clinical medicine, see KASSIRER & KOPELMAN, supra
note 10, at 28-31.
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treating the plaintiff as a purely random selection from the reference group.
Then the probability to be assigned to the plaintiff’s case can be warranted
by the composition of the reference group and the random selection process
from that group. This prabability-of-selection warrant cannot, however, cure
any lack of representativeness in the reference group itself. The warrant for
applying any group statistics to the plaintiff’s case must include the proposi-
tion that the reference group is acceptably representative of that individual
case. Moreover, if the reference group is acceptably representative of, and
adequately matched to, the specific plaintiff, then this reduces the need to
rely on randomness at this stage of the direct inference. Randomization be-
comes less important as the reference group becomes more representative of
the plaintiff. Although non-epistemic decisions or rules must often fill the
inferential gaps created by incomplete causal models, the more representa-
tive the reference group, the more reasonable such reliance might appear.

The next section uses this analysis to critique the reasoning of courts in
a variety of cases and procedural contexts. Too many courts have reasoned
that, as long as there is no known mechanism that completely explains the
plaintiff’s injury, the plaintiff must prove that subgroup B of the reference
group is larger than the baseline-risk subgroup. If the subgroup B were
smaller or of equal size, so this reasoning goes, then a simple random draw
from the reference group does not have a probability greater than 0.5 of
selecting a defendant-created injury. Those courts therefore adopt a quanti-
tative rule for plaintiff success: the plaintiff must prove that subgroup B is
greater than 50% of the reference group A (a “greater-than-50% rule), or
(alternatively) that the relative risk of a defendant-created injury over all
other relevant causes must be greater than 2.0 (a “RR > 2.0” rule).”’ This
quantitative test becomes a necessary condition for the plaintiff’s success.>®
As the next section illustrates, courts have used this reasoning to make find-
ings of fact in cases tried without a jury, to adopt rules about the legal suffi-
ciency of evidence, and to develop exclusionary rules of evidence for prof-
fered expert testimony.

For a number of reasons, however, it is misguided to impose a quantita-
tive threshold on the basis of such reasoning, and courts should re-examine
the basis for such quantitative rules.” First, as long as a significant amount

257.  For surveys of court decisions using such rules, see Russellyn S. Carruth & Bernard D, Gold-
stein, Relative Risk Greater Than Two in Proof of Causation in Toxic Tort Litigation, 41 JURIMETRICS J.
195 (2001); Golanski, supra note 230, at 488-504; Green, supra note 72 (surveying the legacy of the
Agent Orange and Bendectin litigation); and Lucinda M. Finley, Guarding the Gate to the Courthouse:
How Trial Judges Are Using Their Evidentiary Screening Role to Remake Tort Causation Rules, 49
DEPAUL L. REV. 335, 347-64 (1999).

258. I have argued elsewhere that the preponderance standard of proof itself does not require such a
quantitative test, and that the preponderance standard is perfectly intelligible without converting it into a
greater-than-50% rule. Vern R. Walker, Preponderance, Probability and Warranted Factfinding, 62 BROOK.
L.REv. 1075, 1094-1100 (1996) [hereinafter Preponderance, Probability].

259.  Courts and commentators have long debated the use of such quantitative rules applied to par-
ticular types of evidence, such as epidemiology. See, e.g., Merrell Dow Pharm. Inc., 953 $.W.2d at 715-
21; Finley, supra note 257. The argument in this Article, however, is much broader. First, the uncertain-
ties inherent in direct inference are logical in nature and are not limited 1o a particular type of evidence,

HeinOnline -- 56 Ala. L. Rev. 457 2004-2005



458 Alabama Law Review [Vol. 56:2:381

of individual variability remains unexplained by available causal models,
there may be no epistemic warrant for relying on any statistics that happen
to be available. The residual unexplained variability is good evidence that
the causal model is incomplete and that there are causally relevant factors
yet to be identified by science. If more of those factors were known, and the
reference group for the plaintiff were appropriately refined to take them into
account, then the relative risk within the reference group for exposed versus
unexposed people could either increase or decrease.”® An underlying causal
mechanism may function as a confounder to explain many of the risk fac-
tors previously identified.”®' Unless the factfinder first determines that a
proposed reference group is acceptably representative of the specific plain-
tiff, any relative risk for that group has no determinable probative value in
the specific case. In tort cases where causal mechanisms are not completely
understood, non-epistemic decisions are needed about whether the degree of
plaintiff-representativeness is acceptable and whether the uncertainty in
assigning a probability to the specific case is acceptable.

Second, any proposed reference group must have not only acceptable
plaintiff-representativeness, but also acceptable levels of the general uncer-
tainties discussed in Part I. That is, even an adequately representative refer-
ence group must have relative risk statistics that reflect the combination of
risk-factor values present in the plaintiff’s case. For example, if the plain-
tiff’s genetic background and medical history present known risk factors,
then the relevant relative risk is not the risk in the general population, but
the risk in a susceptible sub-population of people sufficiently like the plain-
tiff. A relative risk for a single factor in the general population may be rele-
vant to establishing general causation for the defendant-created exposure,
but its probative value for drawing a direct inference in the particular case
may be unknown. A factfinder would be guessing in drawing a direct infer-
ence about a specific plaintiff using such a general-population relative risk,
unless he or she first decided that the general population was a sufficiently
representative reference group for the purposes of tort law.

Third, decisions about the acceptability of the various kinds of inherent
uncertainty are not scientific issues. Many of the types of uncertainty are
unquantifiable, and scientists have not even established conventions for
their own purposes.” Furthermore, the uncertainties are not confined to

such as epidemiologic evidence. Second, this logical analysis provides a systematic approach to all of
the types of uncertainty involved. Therefore, this Article reaches a much broader and stronger conclusion
about when legal decision rules concerning specific causation should be policy-based.

260.  Any statistical value that happens to occur in the available studies is open 1o significant revision,
either up or down, as knowledge of causal factors increases. Knowing neither the direction nor the mag-
nitude of those adjustments, it may be judicially arbitrary to require the available evidence at any single
point in time to satisfy any statistical threshold.

261.  For discussions of confounding faclors, see supra notes 36, 164, 178 and accompanying text.
262. A notable exception is the scientific convention to adopt a 0.05 level of statistical significance as
the decisional probability for Type I errors that are due to random sampling uncertainty. See supra notes
72-75 and accompanying text. See also Merrell Dow Pharm., Inc., 953 $.W.2d at 724 {deciding that it is
“unwise to depart from the methodology that is ar present generally accepted among epidemiologists,”

HeinOnline -- 56 Ala. L. Rev. 458 2004-2005



2004] Restoring the Individual Plaintiff to Tort Law 459

certain areas of science, such as epidcmjology.zﬁ3’ As this Article demon-
strates, the types of uncertainty are logically inherent to direct inference
based on any kind of knowledge about general causation. Factfinders may
have to make decisions about acceptable uncertainty on a case-by-case ba-
sis, applying common sense and a rough sense of justice, unless courts can
establish principled rules for particular categories of cases. The “lost-
chance” cases, discussed in Part II1.B.2, provide examples of policy-based
rules that respect the uncertainties inherent in finding specific causation.
Once the extent of inherent uncertainty is clear (as well as the non-scientific
nature of decisions about that uncertainty), then the need for non-epistemic
decisions and policy-based rules also becomes clear.”*

Finally, the non-epistemic character of any bright-line, quantitative
threshold is highlighted by its arbitrary nature. On the one hand, a greater-
than-50% rule seems to set the quantitative threshold too high. In a particu-
lar case, there may be a minimally acceptable but incomplete causal model
with a calculated RR < 2.0, but there may also be other known risk factors
present in the plaintiff’s case that probably increase the risk by some un-
quantified amount. In such a case, a reasonable factfinder could find that the
relative risk in the reference group probably sets a floor for the plaintiff’s
individual risk, but that the plaintiff’s individual risk is probably higher.
One might argue that a bright-line test of 50% or RR > 2.0 for the quantified
portion of the evidence is too high, when considered in combination with
such unquantified evidence of additional risk factors. On the other hand,

and that the court would not “acknowledge a statistically significant association beyond the 95% level to
90% or lower values™). The pragmatic nature of even this convention, however, has been widely ac-
knowledged. See supra note 72.
263.  As discussed in Part [ILB.3, some courts have mistakenly thought that specific causation poses
special problems for epidemiologic evidence. Cf. Green et al., supra note 6, at 381 (stating that
“[e]pidemiology is concerned with the incidence of disease in populations and does not address the
question of the cause of an individual’s disease,” a question that is “beyond the domain of the science of
epidemiology”); Freedman & Stark, supra note 226, at 61-62 (concluding that when epidemiologic data
provides the evidence, “[t]he scientific connection between specific causation and a relative risk of 2.0 is
doubtful”).
264.  An example of such a policy-based decision rule is presented by Stevens v. Sec’y of HHS, No.
99-504V, 2001 WL 387418 (Fed. Cl. Mar. 30, 2001), involving a claim under the National Vaccine
Injury Compensation Program, Chief Special Master Golkiewicz proposed and applied a rule requiring
only “[r]easonahle efforts” by the petitioner “to rule out known alternate causes,” and rejected the argu-
ment that “a petitioner must eliminate potential unknown, unidentified, speculative, unapparent, or
spontaneous causes,” because the latter rule “would necessarily prevent any petitioner from prevailing”
in a vaccine case. Id. at *26.

Commentators have also proposed policy-based rules concerning specific causation. See, e.g.,
Berger, supra note 254, at 2117-20 (proposing to abolish the causation requirement in toxic tort cases in
pursuit of various policy objectives); Gerald W. Boston, A Mass-Exposure Model of Toxic Causation:
The Content of Scientific Proof and the Regulatory Experience, 13 COLUM. 1. ENvVTL. L. 181, 187-91,
363-82 (1993) (arguing for different rules on the sufficiency of evidence of causation in mass-exposure
tort cases and in isolated-exposure cases, on the grounds of achieving consistency of outcomes across
cases, achieving optimal levels of deterrence, avoiding unlimited liability, harmonizing public health
regulation and tort law, and promoting corrective justice); Finley, supra note 257, at 366 (arguing
against admissibility rules requiring epidemiologic evidence of relative risk greater than 2.0, and arguing
that by making “individualistic causation judgments” in products liability cases courts are “making
policy judgments about which party should bear the responsibility for causal uncertainty, and which
party is in the best position to learn more about and absorb or spread the costs of the risks”™).
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given the substantial uncertainty inherent in applying any relative risk from
incomplete causal evidence, one might argue that a greater-than-50% rule
sets the quantitative threshold too low. The argument would be that specific
causation requires a finding that the real RR is probably greater than 2.0,
after taking into account measurement uncertainty, sampling uncertainty,
modeling uncertainty, causal uncertainty, and uncertainty about plaintiff-
representativeness. If all uncertainty is chargeable to the plaintiff, then an
appropriate “cushion” above 50% should be built into any quantitative rule.
Therefore, taking the two branches of argument together, any rule establish-
ing a bright-line, statistical threshold for all cases is arbitrarily too high or
too low, if its rationale is the logically flawed reasoning about direct infer-
ence to specific causation.

The appropriate response to these various problems is to abandon alto-
gether both the flawed reasoning and its quantitative progeny. In the face of
significant uncertainty, decisions to find specific causation cannot be epis-
temically warranted and must be justified on non-epistemic grounds. The
next section extends this general criticism further, by addressing a variety of
quantitative rules that courts have applied in particular cases.

B. Judicial Errors in Reasoning About Specific Causation

The previous section of the Article used the analysis in Parts I and Il to
outline a factfinding approach to warranting conclusions about specific cau-
sation. This section examines the practical implications of this analysis by
critiquing judicial errors in various kinds of tort cases. Those cases also
illustrate how the presence of uncertainty undermines the notion that spe-
cific causation is a factual or scientific issue. Recognizing the extent of that
unceriainty should lead courts to consider more appropriate policy justifica-
tions and to adopt better decision rules.

1. Judges as Factfinders and the “0.5 Inference Rule”

Under the traditional standard of proof in tort litigation, a finding of
specific causation must be warranted by “a preponderance of the evi-
dence.”®® Courts have interpreted this phrase as meaning “more likely than
not,” “probably true,” or “more probably true than false.”**® The “weight”
or “convincing force” or “probative value” of the evidence supporting the
finding must be “greater than” the weight of evidence against the finding.?’
Such statements about the standard of proof are uncontroversial. Many
courts and theorists, however, re-formulate the preponderance standard as a

265. See, e.g., 2 MCCORMICK ON EVIDENCE § 339 (John W. Strong ed., 5th ed. 1999).

266. See, e.g., id.; FINKELSTEIN, supra note 198, at 65-66; David Kaye, Naked Statistical Evidence,
89 YaLE L.J. 601, 603 (1980) (book review); J.P. McBaine, Burden of Proaf: Degrees of Belief, 32 CAL.
L. REV. 242, 247, 260-61 (1944); Preponderance, Probability, supra note 258, at 1076-78.

267.  See, e.g., FLEMING JAMES, JR. ET AL., CIVIL PROCEDURE § 7.14 (4th ed. 1992); McBaine, supra
note 266, at 247.
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quantitative rule: the finding must have a probability of being true that is
greater than 172, 0.5, or 50%.>*® This re-formulation can be called the “0.5
inference rule” for factfinding.”®® As applied to findings about specific cau-
sation, this quantitative rule requires a finding of specific causation if, but
only if, the probability of specific causation is greater than 0.5.7° I have
argued elsewhere that such a quantitative interpretation of the standard of
proof is unnecessary, misleading, and unwise, when we evaluate the rule
using the traditional policy rationales for the preponderance standard.”’' The
present Article, however, attacks the error of applying the 0.5 inference rule
to findings of specific causation. Some courts, discussed below, have com-
pounded the adoption of the 0.5 inference rule with a misunderstanding
about the logic of specific causation, with unfortunate results for tort plain-
tiffs.

A judgment in the High Court of Justice, Queens Bench Division, illus-
trates judicial misunderstandings about the structure of warranted factfind-
ing about specific causation.”’”” The judge acted as factfinder in that case,

268.  See, e.g., United States v. Shonubi, 895 F. Supp. 460, 471 (E.D.N.Y. 1995), vacated by 103 F.3d
1085 (2d Cir. 1997); United States v. Fatico, 458 F. Supp. 388, 403 (E.D.N.Y. 1978), aff’d, 603 F.2d
1053 (2d Cir. 1979); United States v. Schipani, 289 F, Supp. 43, 55-56 (E.D.N.Y. 1968), aff'd, 414 F.2d
1262 (2d Cir. 1969); Cooper v. Hartman, 533 A.2d 1294, 1299-1300 (Md. 1987) (holding that the plain-
tiff must prove the patient “had a better than 50% chance of full recovery absent the matpractice” and
stating that “probability” means “greater than 50% chance” and “possibility” means “lcss than 50%
chance”); Cooper v. Sisters of Charity, Tnc., 272 N.E.2d 97, 103-04 (Ohio 1971) (stating that “probable”
in connection with standard of proof “is more than 50% of actual”). For theoretical discussions by com-
menlators, see PORAT & STEIN, supra note 13, at 18; Steve Gold, Causation in Toxic Torts: Burdens of
Proof, Standards of Persuasion, and Statistical Evidence, 96 YALE L.J. 376, 378, 384-86 (1986); David
Kaye, The Limits of the Preponderance of the Evidence Standard: Justifiably Naked Statistical Evidence
and Multiple Causation, 1982 AM. B. FOUND. REs. J. 487, 493; Talbot Page, On the Meaning of the
Preponderance Test in Judicial Regulation of Chemical Hazard, 46 LAW & CONTEMP. PROBS. 267, 269-
71 (1983); David Rosenberg, The Causal Connection in Mass Exposure Cases: A “Public Law” Vision
of the Tort System, 97 HarRv. L. REV. 851, 857 (1984); and Ralph K. Winter, Jr., The Jury and the Risk
of Nonpersuasion, 1971 LAw & SOC’ Y REV. 335, 336-39.

269.  See, e.g, PORAT & STEIN, supra note 13, at 18 (discussing the preponderance of the evidence
standard in tort cases, and combining a probabilistic factfinding rule with a damage award rule of full
recovery); Gold, supra note 268, at 386, 395.

270.  See, e.g.. Hariman, 533 A.2d at 1299-1300, Sisters of Charity, inc., 272 N.E.2d at 103-04, See
also Ronald J. Allen, A Reconceptualization of Civil Trials, 66 B.U. L. REv. 401, 405 (1986); Cohen,
supra note 72, at 394, Kaye, supra note 268, at 493; Koehler & Shaviro, supra note 200, at 249-52;
Modeling Relevance, supra note 198, at 1033-34; Evidence Scholarship, supra note 198, at 451-52, 454,
For a contrary view, see Charles Nesson, The Evidence or the Event? On Judicial Proof and the Accepr-
ability of Verdicts, 98 HARV. L. REV. 1357, 1359 (1985).

271.  Preponderance, Probability, supra note 258, at 1097-1120. The preponderance standard itself,
without the quantitative interpretation, serves the traditional objectives of treating parties in a fair and
unbiased fashion and of creating an incentive on all parties to produce adequate evidence if they can do
s0. /d. at 1121. I have argued that what it means to say that a finding is “probably true” and “warranted
by a preponderance of the legally available evidence” is that it satisfics the formal requirements of consis-
tency and coherence, that it has sufficient support in the legally available evidence (in the sense of being
reasonably inferable from that evidence), and that the factfinder anticipates a fairly wide scope of agreement
on the findings, at least by reasonable people who weigh the same evidence. /d. at 1120-21. The analysis of
direct inference to specific causation in the present Article constitutes a step toward developing useful warrant
rules in a particular area of tort law.

272.  XYZ v. Schering Health Care Ltd., [2002] EW.H.C. 1420, 2002 WL 1446183 (Q.B. July 29,
2002).
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and the judgment contains an account of the factfinder’s reasoning.””> The
case involved seven lead claims (out of a total of ninety-nine claims)
brought against three pharmaceutical manufacturers and alleging products
liability for oral contraceptives.””* The claimants alleged injuries related to
venous-thromboembolism (VTE), which includes such disorders as deep
vein thrombosis, pulmonary embolism, and cerebral venous thrombosis.””
The allegedly defective products were “third generation combined oral con-
traceptives,” which contained a synthetic oestrogen in a dose equal to or less
than thirty #g, combined with a “third generation” synthetic progestogen.?’”®
Claimants sought to prove that the third generation products put them at
greater risk of VTE than a second generation product would have.””’ A
“second generation combined oral contraceptive” was defined as a product
with a synthetic oestrogen dose of no more than fifty ug, combined with one
of the progestogens used in the “second generation” of the product.””® The
claimants therefore needed to prove, in part, specific causation: that the
third generation products that they ingested caused their particular VTE
injuries.?”

Despite the individual nature of the claimants’ cases, the judge and (ap-
parently) all of the parties considered the determining issue to be whether
the available epidemiologic studies established that third generation prod-
ucts at least doubled the true risk of VTE, compared to the risk posed by
second generation products.”® Before other issues were tried, the judge
conducted a forty-two-day trial devoted to this issue alone,”®' and the trial

273. Seeid | 19.
274. Il 1. The claimants alleged that the defendants’ products were defective under the provisions
of the Consumer Protection Act 1987 and Product Liability Directive 85/374/EEC. Id 1 2. The judgment
occurred in the context of highly publicized concern in the United Kingdom over the safety of oral contracep-
tives. Id. [ 3. See also infra note 278.
275.  Schering Health Care, 2002 WL 1446183, 11 1, 4.
276.  See id. 19 4-8.
277.  See id. T 20, 339, 343. Although the “first generation” of combined oral contraceptives con-
tained high doses of synthetic oestrogen (150 ug or more), concern over a possible increased risk of VIE
led to development of a “second generation” product with lower doses of oestrogen (on the order of 5¢
#g or less), combined with a variety of progestogens. /d. { 10.
278.  Id.  10. Products with lower doses of oestrogen had been introduced to lower any risk of certain
cardio-vascular diseases, including not only VTE, but also “acute myocardial infarction [and] cerebral
infarction.” See id. 9§ 52. There was surprise, therefore, and an ensuing “pill scare” among the general
public, when the UK Committee on the Safety of Medicine “circulated a warning” in October 1995 that
recent studies indicated that third generation products were associated with “around a two-fold increase
in the risk” of VTE, compared with second generation products. See id. ] 3, 11.
279.  Asthe judge stated:

I have to decide on the balance of probabilities on the evidence presented before me whether

each of these Claimants has established her case that these products were defective, that the

defective nature of them caused or contributed to her injury, and therefore that she is entitled

to damages as a result.
Schering Health Care, 2002 WL 1446183, 9 19.
280.  Id 9 20-21 {stating that “all agree that if the Claimants fail to prove this the action should go no
further as it could not succeed”™). While arguing that the factfinding logic in that case was flawed, this
Article takes no view on whether the Court had a responsibility to use correct reasoning even if the
claimants” attorneys did not.
281, M q22.
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ended with a judgment for defendants that disposed of the cases.®* In arriv-
ing at this judgment, the judge found that there probably was no increased
risk at all,”® because he was persuaded by a controversial application of a
regression model to the data in a particular study.” In the alternative, how-
ever, without relying on that regression model, he found that there was
probably a (general) causal connection, but that the increased risk was most
likely around 1.7.* The court held that a finding of increased risk of about

282,  Id. 9 339-45.

283.  The analysis in this Article also lays a foundation for further research into the causal role of
gender bias—bias in deciding, for example, whether or when a causal model about risk takes enough
cansally relevant variables into account. If, as this Article establishes, decisions about the acceptability
of uncertainty are not scicntific in nature, then such decisions might exhibit biases along demographic
lines, such as gender. Cf. Vern R, Walker, Consistent Levels of Protection in Intemational Trade Dis-
putes: Using Risk Perception Research to Justify Different Leveis of Acceptable Risk, 31 ENVTL. L. REP.
11,317, 11,319-24 (2001) (summarizing scientific literature on demographic biases in risk perception,
including gender bias in estimating degrees of risk).

284, Schering Health Care, 2002 WL 1446183, T 121-63, 339. The controversy involved whether a
“Cox regression analysis with time-dependent covariates” should be used in a case-control study, and
whether the researchers applied it comectly. Id. 94 124-26. The hypothesis behind using the model was
that the higher risk for the third generation products might be explained by a combination of (a) a
“healthy user” effect or “depletion of susceptible[s]” among second generation users, whereby long-term
users who tolerate the products well tend to continue to use them, while those who do not tolerate them
well tend to switch to third generation products, and (b) a loading of less healthy or more problematic
users into the third generation group, by physicians who prescribe the “safer” drug to the patients that
appear to be at higher risk. Michael A. Lewis et al., The Increased Risk of Venous Thromboembolism
and the Use of Third Generation Progestagens: Role of Bias in Observational Research, 54
CONTRACEPTION 5, 9 (1996) [hereinafter “TNS 27’], available at http://www sciencedirect.com; Michzael
A. Lewis et al., The Differential Risk of Oral Contraceptives: The Impact of Full Exposure History, 14
HUM. REPROD. 1493, 1493 (1999) [hereinafter “TNS 3", available ar hitp://humrep.oupjournals.org;
Schering Health Care, 2002 WL 1446183, ] 106-07, 122, The Cox model with time-dependent covari-
ates uses the product-exposure history of users to adjust a ““hazard ratio” that measures statistical associa-
tion. TNS 3, at 1494; Sehering Health Care, 2002 WL 1446183, T 124-25.

For each case and control, the Transnational Study (TNS) recorded data (by month) on which
product the participant had used, although the validity of such self-reported data was controversial. Id. Y
127-31. The Cox model contained a variable for prior product exposure (a “time-dependent covariate™)
that could take on various values over time as the participant started, stopped, or switched products. 1d.
I 144-45. The Cox model in effect compared different exposure groups over time and generated their
respective hazard rates. Id. § 145. The court found

that Cax was an appropriate model to apply to this dataset, was applied to it coirectly, that it
did . . . make effective adjustment for the effect of lifetime duration of |combined oral contra-
ception] use, and therefore as a matter of probability there is no true relative risk of VTE at-
taching to [third generation products] as against [second generation products].
Id. 7 162. This finding of no increased risk would mean that the claimants’ cases failed. Id. q 163. How-
ever, in the alternative and in case of appellate reversal on this use of Cox, the judge concluded that “I
think it sensible to go on to reach conclusions on the ather points outstanding, despite my finding on
Cox.” Id.
285.  Id. T 341-44. The judge wrote:
As the above findings [about increased risk statistics] both dispose of the first issue in a way
which means that the claim must fail, it is not strictly necessary for me to make a finding as
to whether the RR of 1.7 itself translates into a relationship of true cause and effect or is a
merely statistical appearance. If I had to do so I would incline to a finding that there is an un-
derlying causal connection at about that level of increased risk.
1d. 9 344.

The judge carefully noted the difference between relative risk and an odds ratio, and decided
that for his purposes he would use them “interchangeably albeit inaccurately.” Id § 26-27. As discussed
in Part 1.C, this can be a reasonable approach when assessing the strength of association for purposes of
deciding general causation.
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1.7 disposed of the claimants’ cases because, with a relative risk falling
short of 2.0, no claimant could prove that the third generation product (even
if defective) probably caused her VTE.*® A product posing such an in-
creased risk might be defective, but each individual case would fail on the
proof of specific causation.

This Article does not second-guess the judge’s findings of fact, nor does
it re-evaluate the evidence linking oral contraceptives to VTE. However,
using the analysis in this Article would have produced a very different fact-
finding pattern in that case. First, with regard to a major premise in a direct
inference of causation, the evidence supported a finding of general causa-
tion between use of a third generation product and VTE. In so finding, the
judge evaluated the evidence for uncertainties due to measurement, sam-
pling, and associational modeling.”® He further considered the weight of
evidence for finding causation and not merely association.”®® The portions
of the judgment addressing those uncertainties illustrate the various aspects
of the analysis in Part I. When controversies arose over the acceptability of
various kinds of uncertainty, he made decisions about acceptability and
gave his reasons.”®® He at least implicitly considered the levels of all of
these uncertainties to be acceptable for purposes of the case when he de-
cided that, on balance, the evidence favored a finding of general causation.

The judge also concluded that the epidemiologic evidence supported
finding “a RR of about 1.7.”**° Thus, if there is a group of women similar to

286.  Id. 21, 345.

287.  Concerning measurement uncertainty, see id. ] 128-31 (discussing validity of interview data on
personal histories of oral contraception use); id. T4 194-97, 219-24 (discussing whether, for purposes of
matching controls to cases, the age of the study participant should be categorized by “year of birth” or by
“5 year bands™); and id. [ 279-86 (discussing the diagnostic uncertainty for VTE, and the possible
referral-bias and diagnostic-bias in the case group because women perceived to be at risk might have a
greater chance of both referral and diagnosis).

Concerning sampling uncertainty, see id. ] 64-67 (discussing which data from which study
centers to include in the WHO study); and id. ] 258-61, 279-86 (discussing referral-bias and diagnostic-
bias as possible causes of lack of sample representativeness). The court’s judgment in effect combined
measurement and sampling uncenainty into a single concern over “bias” as “anything which will distort
the study by making the sampling process on which it is based unrepresentative or skewed in favour of
or against a particular side of the equation.” Id. § 258.

Concerning modeling uncertainty, see id. I 194-97, 219-24 (discussing how best to control for
the age of the study participant so as to minimize possible confounding effects). See also supra note 284
(discussing the modeling uncertainty in applying a Cox regression model).

288. Concemning causal uncertainty, see id. I 24, 302-08, 344. Cf. id. T 262-78 (discussing pre-
scriber-bias as a possible causal confounder—that is, the possibility that doctors would “preferentially
prescribe” third generation products to patients who are already “at an elevated risk of VIE™).

289.  The judgment discusses the acceptability of various kinds of uncertainty inherent in the major
premise of general causation. See, e.g., id. {f 64-67 (discounting the “much higher” risk estimates from
non-Oxford centers in the WHO study because of “the sparsity of the non-Oxford data” and their result-
ing “very wide [confidence intervals]”); id, {4 128-31 (finding “a body of good quality evidence as to
total contraceptive history” for participants in the TNS study); id. ] 209-24 (finding that “[t]he right
value to give {to the odds ratio in] the GPRD studies collectively is one falling in the area between 1.5
and 1.8,” despite the “impossibility” of saying “as a matter of probability that one of these studies should
be accepted in total as being right and the other rejected in total as being wrong™); and id. § 297 (declin-
ing to reduce previous estimates of relative risk, despite the possibility of bias). See also supra note 284
(discussing the modeling uncertainty in applying a Cox regression model).

290.  Schering Health Care, 2002 WL 1446183, 9 93, 341, 343; see also supra note 286 and
accompanying text.
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those in the study and who are taking the third generation combined oral
contraceptives, and if in that group about 170 women are expected to de-
velop VTE, then about 100 of those 170 women would have developed
VTE even using the second generation product, while the other seventy
cases are expected to develop VTE as a result of taking the third generation
product.”' In the standard formulation of direct inference used in this Arti-
cle, the women who develop VTE as a result of taking a third generation
combined oral contraceptive comprise subgroup B.

Given a determination of general causation for the product, however,
the court should have turned its attention to particular plaintiffs instead of
ending all of their cases based on the estimate of general increased risk of
1.7. The next task was to derive a reference-class profile for the particular
type of VTE injury of each individual plaintiff, using all factors known or
suspected to be causally relevant in each case. This the court did not do. A
short opening paragraph of the judgment summarizes minimal information
about the exposure and symptoms of the claimants,” but the remainder of
the long and detailed judgment makes no use of this information, nor does it
at any time discuss the individual evidence of specific causation for these
claimants.?®® Yet the seven claimants, who suffered different types of inju-
ries, may have differed from each other on variables causally relevant to
their injuries. ** The judgment does not discuss the medical histories of
these individual claimants, their general health conditions, or information on
other variables thought to be causally relevant—such as obesity, varicose
veins, or their histories of thrombosis, rheumatic heart disease, or hyperten-
sion in pregnancy.”” Such plaintiff-specific information clearly played no
role in the judge’s reasoning.

panying text.

291.  One estimate of the baseline incidence of VTE in healthy non-pregnant women taking second
generation combined cral contraceptives is about fifteen cases per 100,000 woman-years. Schering
Health Care, 2002 WL 1446183, { 17 (summarizing new warnings required to be on the Summary of
Product Characteristics for third generation combined oral contraceptives); ¢f. World Health Organiza-
tion Collaborative Study of Cardiovascular Disease and Steroid Hormone Contraception, Effect of Dif-
ferent Progestagens in Low Oestrogen Oral Contraceptives on Venous Thromboembolic Disease, 346
LANCET 1582, 1587 (1995) [hereinafter “WHOQO Study IT”"] (providing another estimate of the incidence
of idiopathic VTE), available at hup://'www.sciencedirect.com. Therefore, the group of healthy women
that would yield about seventy cases of third generation-caused-VTE would have about 667,000 woman-
years of exposure. Such a group could expect about 100 baseline cases of VTE and about seventy excess
cases that are third generation-caused.

292.  Schering Heaith Care, 2002 WL 1446183, § 4 (summarily describing claimants).

293.  The cases of the claimants failed before the judge heard any evidence relating to individual
claimants. Id. § 22; Mark Mildred, Case Comment, 4 J. PERS. IN). L. 4, 428-30 (2002).

294.  Three suffered deep vein thrombosis, reporting such symptoms as “leg pain and loss of mobil-
ity”; two suffered pulmonary embolisms, with symptoms such as chest pain; one suffered cerebral ve-
nous thrombosis, reporting “very severe headaches,” “nausea and giddiness”; and one suffered “a stroke
as a result of a paradoxical embolism.” Schering Health Care, 2002 WL 1446183, q 4. With respect to
this last claimant, the judge wrote: “I do not as yet have full details of her current symptoms.” /d.

295.  On causally relevant factors, see id. 4 11 (quoting the Committee on Safety of Medicines as
listing risk factors for VTE); id. 1 17 (discussing new warnings for third generation combined oral con-
traceptives); World Health Organization Collaborative Study of Cardiovascular Disease and Steroid
Hormone Contraception, Venous Thromboembolic Disease and Combined Oral Contraceptives: Results
of International Multicentre Case-Control Study, 346 LANCET 1575, 1579-80 (1995) [hereinafter “WHO
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Once general causation is found for the product, however, each claimant
deserves to have her own case decided on its own merits. A reasonable fact-
finder should determine, for each plaintiff taken individually, a profile of
causally relevant characteristics that identifies a reference group for that
plaintiff and her relevant injury—that is, a group of people who are similar
to the particular plaintiff in her type of injury and in all known or suspected
causally relevant factors for that type of injury. Then the factfinder should
use each plaintiff’s reference-group profile to evaluate the available evi-
dence in the record for any warranted generalizations for women satisfying
this profile. If the totality of the epidemiologic evidence contains data gath-
ered on enough of those variables, then there may be acceptable relative risk
estimates for such a reference group.**® For example, there may be relative
risk estimates for women with a history of hypertension in pregnancy, who
are obese, and who suffer deep vein thrombosis while using a particular
third generation product.”’ Moreover, the toxicological evidence or clinical
studies might contain evidence of bias for additional variables, which medi-
cal experts could use to adjust these relative risk estimates either up or down
for application to each specific claimant *® If sufficient data are available, a
reasonable factfinder might estimate, with acceptable uncertainty, the rela-
tive risk for women similar to the specific plaintiff—in this litigation, the
relative risk of the injury for women-like-the-plaintiff who use the third

Study I"}, available at hitp://www.sciencedirect.com; and Walter O. Spitzer et al., Third Generation
Oral Contraceptives and Risk of Venous Thromboembolic Disorders: An International Case-Control
Study, 312 BriT. MED. J. 83, 84, tbl.1 (1996) [hereinafter “TNS 17), available at http://www.bmj.bmjjou
rnals.com.

“[M]ajor risk factors for VTE [include] trauma, surgery, immobilisation, and pregnancy . . . .
WHO Study II, supra note 291, at 1587. The WHOQ case-control study was designed to investigate only
“idiopathic” VTE, and women with these major risk factors were excluded from the study. See WHO
Study I, supra note 293, ai 1576-77 (listing exclusion criteria for cases and controls); WHO Study IT,
supra note 291, at 1587 (describing the study design); Schering Health Care, 2002 WL 1446183, q 292
(discussing the potential bias introduced by studying cases of idiopathic VTE in hospital patients, if the
“target population” is “healthy women in the community”). While these risk factors are relevant for each
specific claimant, it is possible that the lead claimants were chosen in part because these major causes
were absent in their cases. A thorough appreach to developing a reference-group profile would list all
known or suspected risk factors for the claimant’s injury and would classify the claimant on every one of
them.
296,  Unfortunately, when plaintiffs attempt to refine the reference group and re-analyze the available
data, they often encounter judicial skepticism, especially if the raw data and re-analysis are unpublished.
E.g., Merrell Dow Pharm., Inc. v. Havner, 953 S.W.2d 706, 725-27 (Tex. 1997). Such refinement, how-
ever, is precisely what plaintiffs and factfinders should do, and it should come as no surprise that re-
finement almost certainly leads to increased statistical uncertainties about the plaintiff’s reference group.
The problem of deciding what to do about those uncertainties has no scientific or epistemic solution.
297.  There is a good likelihood, of course, that the available smdies would have insufficient statisti-
cal power to provide a statistically significant relative risk for such a refined reference group. See supra
Part 1.C (discussing statistical power and sampling uncertainty). A major thesis of this Article is that
there is every reason to think that in toxic tort cases, a reference group thought to be adequately repre-
sentative will turn out to be inadequately studied. Given this central fact about specific causation, there
should be policy grounds for deciding when claimants recover damages and when they do not.
298.  The possible relevance of different types of evidence (epidemiologic, toxicological, and even
case reports) to a plaintiff-specific reference group should make judges cautious about adopting rules
that exclude studies from evidence one-by-one, in isolation from other evidence in the case. See infra
Part [11.B.3.

2
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generation oral contraceptive that she did, compared to the risk for women-
like-the-plaintiff who use second generation oral contraceptives. The court,
however, did not evaluate the evidence for such claimant-specific reference
groups, but held against all the claimants on the single finding that the gen-
eral increased risk was less than 2.0. This finding was not about any indi-
vidual claimant but, in reality, about a “statistical woman.”

The magnitude of the increased risk for the “average woman” in an
available study, however, would seem an arbitrary rule of decision in such a
case were it not for the logical fallacy behind it. In a case such as Schering
Health Care, where it is demonstrable that no available causal model even
approaches the completeness needed to explain or predict individual
cases,”” assigning any probability of specific causation on the basis of such
evidence cannot be epistemically warranted. Justice MacKay’s primary
logical error was thinking that if the general studies had in fact shown a
relative risk greater than 2.0, then this would be sufficient evidence to war-
rant finding specific causation.’® His error was thinking that finding spe-
cific causation on the Schering Health Care evidence could ever be a fac-
tual issue.’®' But, as a logical matter, even if the evidence had shown a gen-
eral increased risk of 3.0, a finding of specific causation in a particular
claimant’s case would have been just as speculative as it would have been
with a relative risk of 1.7. The critical question is not the magnitude of the
general relative risk in some study group compared to the baseline rate in
that group, but the acceptability of the uncertainties inherent in estimates of
relative risk for claimant-specific reference groups that are defined by the
causally relevant factors in each specific case.

In tort cases like Schering Health Care, specific causation cannot be a
factual or scientific issue. Given the incompleteness of the best available
causal model for the relevant injuries, whether any particular plaintiff ever
prevails must be a matter of common sense, fairness, and policy. The impor-
tant policy decisions are who should bear the cost of uncertainty about cau-
sation, and whether factfinders should make such decisions on a case-by-

299.  XYZ v. Schering Health Care Ltd., [2002] E.-W.H.C. 1420 (QB), 2002 WL 1446183, { 31 (July
29, 2002) (stating that “[t]he condition under consideration in this case is on the face of it classically
suited for an epidemiological investigation,” because “haematology is very far from reaching a full
understanding of what causes blood clots to form in the venous system”).
300. This was clearly a logical error on the judge’s part, because he gave the following as his reason
why the claimants must fail unless they prove a general relative risk for VTE that is greater than 2.0:

If factor X increases the risk of condition Y by more than 2 when compated with factor Z it

can then be said, of a group of say 100 with both exposure to factor X and the condition, that

as a matter of probability more than 50 would not have suffered Y without being exposed to

X. If medical science cannot identify the members of the group who would and who would

not have suffered Y, it can nevertheless be said of each member that she was more likely than

not to have avoided Y had she not been exposed to X.
Id. § 21 (emphasis added). The emphasized words are those with logical significance for direct inference.
The analysis in Parts I and IT explains why this reasoning is fallacious.
301.  This logical error also cost the litigants and the court a substantial amount of time and money
spent litigating a precise point-estimate of relative risk. See, e.g., id. 9 32 (listing the subtle differences in
relative risk values espoused by the claimants’ and defendants’ expert witnesses). If this inquiry is
doomed to an inconclusive end, then such expenditures are very inefficient.
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case basis or whether courts should adopt uniform decision rules for entire
categories of cases. The fallacy of thinking that a general relative risk
greater than 2.0 would obviate the problem of plaintiff-representativeness
has led courts to the two further mistakes of thinking that relative nsk
greater than 2.0 is sufficient evidence for a finding of specific causation and
that such a relative risk is necessary for such a finding. Logically speaking,
none of these three propositions is true. In the Schering Health Care case,
these fallacies led the judge to decide the fates of ninety-nine claims (and in
effect uncounted others) on a single finding about a statistical woman,
whereas a clearer understanding of the logic of specific causation might
have led the court to adjudicate individual cases on a broader policy basis.
These same fallacies have also led courts to adopt unjustified decision rules
for ruling on motions about the sufficiency of the evidence and about the
admissibility of particular items of evidence. The next two sections illustrate
these two types of error.

2. Judges as Referees of Reasonable Inferences
and Rules on Sufficiency of Evidence

Once judges believe that reasonable factfinders operating under the pre-
ponderance standard of proof will make findings about specific causation in
accordance with the 0.5 inference rule, then it is a short step for those
judges to adopt corresponding rules for evaluating the legal sufficiency of
the supporting evidence.’” Judicial misunderstandings about the logical
warrant for specific causation compound the confusion. Judges who think
that specific causation is always a factual issue, on which scientific experts
have the dominant voice, are prone to drawing arbitrary lines in the shifting
statistical sands and to dismissing cases for the wrong reasons. The so-
called “lost-chance™ cases in the area of medical malpractice provide one
illustration of these judicial errors.

The thinking behind the 0.5 inference rule has played a decisive role in
confusing the courts over the lost-chance cases.” In a typical lost-chance
case, at the time the defendant’s negligent conduct occurred, the plaintiff
already had a pre-existing illness with a higher-than-50% baseline risk of
death or further bodily injury.*® The defendant’s negligence then caused the

302.  See, e.g., Green, supra note 72, at 691 (concluding that “any relative risk less than two would be
inadequate to support a plaintiff’s verdict,” at least “in the absence of other evidence enabling a more
refined assessment with regard to the plainaff™).
303.  For discussion of these cases, see Walker, supra note 18, at 248-56, 297-307.
304.  E.g., Falcon v. Mem'l Hosp., 462 N.W.2d 44 (Mich. 1990) (62.5% chance of dying); Kallenberg
v. Beth Israel Hosp., 357 N.Y.S5.2d 508 (App. Div. 1974), aff"d, 337 N.E.2d 128 (1975) (60-80% chance
of dying); Herskovits v. Group Health Coop., 664 P.2d 474 (Wash. 1983) (61% chance of dying).

When lost-chance situations involve baseline risks less than 50% (that is, success rates over
50%), courts have routinely sent the cases to the jury. E.g., Rewis v. United States, 503 F.2d 1202 (5th
Cir. 1974) (survival more likely than not if proper diagnosis and treatment); Glicklich v. Spievack, 452
N.E.2d 287, 291 (Mass. App. 1983) (94% chance of surviving 10 ycars with proper diagnosis, reduced to
“a 50% or less chance of ten year survival’”); Hamil v. Bashline, 392 A.2d 1280 (Pa. 1978) (75% chance
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plaintiff’s risk to increase. However, when the plaintiff subsequently died or
suffered further injury, the high baseline risk prevents experts from testify-
ing that the defendant’s negligence, and not just the pre-existing condition,
was a cause of the death or further injury.*® Most judges considering these
cases implicitly adopt the 0.5 inference rule and conclude that a warranted
inference depends entirely on whether the proportion of negligence-caused
injuries, out of the total number of injuries, is greater than 0.5.>* They think
that if the excess risk due to the defendant’s negligence exceeds-—ever so
slightly—the baseline risk, then the plaintiff is entitled to recover.’”” More-
over, they do not understand how a plaintiff could prove specific causation
as more likely than not if that proportion is less than or equal to 0.5 (50%).
Without an appreciation of the non-scientific nature of any decisions for
dealing with the uncertainties that are necessarily inherent in the lost-chance
cases, and misled by the mistaken logic behind the 0.5 inference rule, courts
that acknowledge the fairness issue in those cases have been reluctant to
decide them on an appropriate policy foundation. Few courts have even
considered re-thinking the 0.5 inference rule itself.**® Some courts, in order
to avoid the seemingly inexorable and harsh result of that rule, have re-
placed the traditional “but-for” concept of causation with a vague “substan-
tial factor” concept. °® Many courts have adopted a “loss of chance” as a
new kind of compensable injury, despite their misgivings about the implica-
tions of doing so for “mere-risk” cases where a physical injury has not oc-
curred.’® Tragically, still other courts have refused to assist lost-chance

of survival if properly treated).

305. See, e.g., DeBurkarte v, Louvar, 393 N.W.24d 131, 136-37 (Iowa 1986) (citing nine prior cases);
Falcon, 462 N.W.2d 44, 56; Kallenberg, 357 N.Y.8.2d 508, 511; Herskovits, 664 P.2d 474, 477,

306.  For a noteworthy awareness of the fallacy in this, see Falcon, 462 N.W.2d at 47 (acknowledging
that “[t]o say that a patient would have had a ninety-nine percent opportunity of survival if given proper
treatment, docs not mean that the physician’s negligence was the cause in fact if the patient would have
been among the unfortunate one percent who would have died™).

307. Dumas v. Cooney, | Cal. Rptr. 2d 584, 589 (Dist. Ct. App. 1991) (stating that where testimony
establishes a better-than-even chance of survival absent negligence, “a finding for the plaintiff is consis-
tent with existing principles of proximate cause”); Cooper v. Hariman, 533 A.2d 1294, 1299 (Md. 1987)
(holding that, under “traditional rule” governing standard of proof, the plaintiff has a burden of proving
that the patient “had a better than 50% chance of full recovery absent the malpractice™).

308.  For an example of a court probing the correct logic, see Rewis, 503 F.2d at 1205-11 (holding in
a case involving misdiagnosis of aspirin poisoning in a child that it was essential that the factfinder
examine assumptions concerning aspirin ingestion rate, absorption rate into the bloodstream, and elimi-
nation rate from blood in the particular patient; if the patient did not fit the assumed characteristics on
these factors, then “there is at least an equal chance that she would have fallen below the line indicated
[the line above which fatalities are likely to occur], in which event she would have shown up on the chant
as one patient who survived”),

309. See e.g., Evers v. Dollinger, 471 A.2d 405, 413-15 (N.J. 1984) (adopting “substantial factor”
causation); Herskovits, 664 P.2d at 477-78 (same). Cf. Werner v. Blankfort, 42 Cal. Rptr. 2d 229, 232-39
(Dist. Ct. App. 1995) (discussing the range of positions on causation taken by the courts); DeBurkarre,
393 N.W.2d ar 137 (staiing that by viewing the bodily injury as the compensable harm and by allowing
the plaintiff to recover full damages for that injury, courts “effectively allow[] a jury to speculate on
causation because expert testimony that a physician's negligence probably caused the total damages is
not required,” and thereby adopt “an extreme position [that] clearly distorts the traditional principles of
causation”); Walker, supra note 18, at 249-51.

310. E.g, Wollen v. DePaul Health Cir., 828 S.W.2d 681, 685 (Mo. 1992); Herskovits, 664 P.2d 474,
477.
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plaintiffs at all and have kept them from reaching the jury by reasoning that
the 0.5 inference rule requires a holding that the plaintiff’s evidence is le-
gally insufficient.*"

The analysis in this Article, however, leads to the conclusion that a find-
ing of specific causation in a lost-chance case is not a factual or scientific
matter, and that the issue should never depend solely or even principally
upon the magnitude of the percentage in the major premise. Whether the
available evidence is legally sufficient should depend largely on what kinds
and levels of uncertainty are present in the evidence and in any direct infer-
ence from that evidence, and on whether those uncertainties are acceptable
given the tort context. What has happened in these cases is that many courts
have recognized the fairness of letting the jury decide each case on its own
evidence.>'? Unfortunately, some of these courts have modified the concepts
of causation or compensable injury in order to do so. But it is the mistaken
0.5 inference rule applied to specific causation that brought about these
conceptual changes and made judges reluctant to adopt new rules about
specific causation that are justified squarely on policy grounds.

Moreover, in the lost-chance cases, clearly there are policy rationales
for helping the plaintiff get to the jury. For example, in most cases, the de-
fendant had a physician-patient relationship with the plaintiff. Some courts
have held that the defendant therefore undertook a duty of care to protect
the plaintiff even from increased risk.’® This special relationship supports a
fairness argument for placing the cost of particular types of uncertainty on
the defendant. Another fairness rationale for assisting the plaintiff is the
notion that the defendant’s negligence caused the lack of probative evi-
dence.’™* The reasoning is that if there had been no negligence, then the
factfinder would know that the plaintiff must be a baseline case. Although
this Article cannot evaluate such policies and rules, they do serve to illus-

311.  See, e.g., Cooper, 533 A.2d at 1299 (holding that the plaintiff failed to prove a “probability” of
causation, where the chance of recovery was only “possible” and the court defined “probability” as a
“greater than 50% chance™: “[p]robability exists when there is more evidence in favor of a proposition
than against it (a greater than 50% chance that a future consequence will occur)”) (quoting Pierce v.
Johns-Manville Sales Corp., 464 A.2d 1020, 1026 (Md. 1983)); Fennell v. S. Md. Hosp. Ctr., Inc., 580
A.2d 206 (Md. 1990) (holding that a 40% lost chance of survival was insufficient evidence that the
defendant caused the plaintiff's death); Cooper v. Sisters of Charity, Inc., 272 N.E.2d 97, 104 (Ohio
1971) (holding that expert opinion that expectation of survival was “[mlaybe . . . around 50%” was
legally insufficient to create a jury issue).

312,  Chudson v. Ratra, 548 A.2d 172, 179-80 (Md. Ct. Spec. App. 1988) (stating that “courts . . .
have allowed juries to determine probabilities based directly or indirectly on universal statistics or even
on the expert’s genera! experience with other patienis,” either out of necessity or “based upon a tacit
recognition that even estimates of probabilitfies] tailored specifically to a given patient are ultimately
derived from generally accepted statistical norms”).

313. E.g., Thompson v. Sun City Cmty. Hosp., Inc., 688 P.2d 603, 615-16 (Ariz. 1984), Fulcon, 462
N.W.2d at 51-52. See RESTATEMENT (SECOND) OF TORTS § 323 (1965).

314.  E.g., Thompson, 688 P.2d at 616; Falcon, 462 N.W.2d at 49-51. Two commentators have pro-
posed imposing liability if the defendant wrongfully caused “evidential damage.” PORAT & STEIN, supra
note 13, at 73-76, 160-84, 195-201. For a critique of this proposal, see Vern R. Walker, Uncertainties in
Tort Liability for Uncertainty, 1 LAW, PROBABILITY & RisK 175, 179-84 (2002).
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trate the kinds of non-epistemic rationales used to justify rules dealing with
specific causation in lost-chance cases.

The analysis in this Article not only legitimates the adoption of policy-
based rules, but also provides more nuanced predicates for those rules based
on the layers of uncertainty involved in specific causation. In the case of
any specific plaintiff, there may be some known risk factors for which there
is adequate statistical information, some known risk factors with inadequate
statistical information, some suspected risk factors with little or no quantita-
tive information, and other pieces of information of unknown causal rele-
vance. There may also be significant measurement, sampling, modeling, and
causal uncertainties underlying the relative risk in the major premise. This
array of uncertainties may be due in part to societal decisions about research
funding, in part to a party’s failure to generate additional information, in
part to a party’s failure to produce the evidence available to it, and in part to
inherent uncertainties that are unlikely to be eliminated even if more scien-
tific evidence were available. Judicial rules could use such distinctions to
allocate the burdens of production and persuasion differently, depending on
the type of uncertainty involved. For example, a court could impose on the
plaintiff the burden of proving, with acceptable uncertainty, general causa-
tion between the defendant’s negligence and the plaintiff’s type of injury in
a reference group roughly representative of the plaintiff. That is, the plain-
tiff must prove general causation, but need not prove specific causation. The
burden might then shift to the defendant to prove a direct inference of spe-
cific causation.’”® That is, if the defendant wants the factfinder to rely on
particular statistics to draw a direct inference to a probability for the plain-
tiff, then the defendant must prove that the reference group and its statistics
adequately represent the individual plaintiff. When the defendant urges the
factfinder to infer that the plaintiff probably would have died even absent
the defendant’s negligence, the defendant is urging the factfinder to draw a
direct inference to the specific case. This allocation of burdens of proot al-
lows meritorious cases to go to the jury without the need to alter traditional
concepts of causation or compensable injury.

Broader institutional policies (not specific to lost-chance cases) can also
come into play. To the extent that inherent uncertainties remain after all
reasonable efforts have been taken to reduce or eliminate them, courts can
look to non-epistemic grounds to justify decision rules for dealing with such
cases. For example, in Liriano v. Hobart Corp., Judge Calabresi wrote, for a
court applying the tort law of New York, that “[w]hen a defendant’s negli-
gent act is deemed wrongful precisely because it has a strong propensity to
cause the type of injury that ensued,” the plaintiff has satisfied his burden of
producing legally sufficient evidence of specific causation.’® Judge
Calabresi also stated that “[i]n such situations, rather than requiring the

315.  See Walker, supra note 18, at 303.
316. 170 F.3d 264, 271 (2d Cir. 1999).
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plaintiff to bring in more evidence to demonstrate that his case is of the or-
dinary kind, the law presumes normality and requires the defendant to ad-
duce evidence that the case is an exception.”"’ In Zuchowicz v. United
States, Judge Calabresi wrote (for a court applying the tort law of Connecti-
cut) that

when a negative side effect is demonstrated to be the result of a
drug, and the drug was wrongly prescribed in an unapproved and
excessive dosage (i.e. a strong causal link has been shown), the
plaintiff who is injured has generally shown enough to permit the
finder of fact to conclude that the excessive dosage was a substan-
tial factor in producing the harm.*'®

Such a rule protects patients against the often unknown risks of ingesting
prescription drugs at higher-than-approved dosages and is in line with a
broader rule that presumes a causal connection between violation of a stat-
ute and the very type of accident the statute was intended to prevent.’” In
certain kinds of cases, therefore, the evidence of general causation might
satisfy the plaintiff’s ordinary burden on specific causation.

Another line of cases (besides the lost-chance cases) that illustrates ju-
dicial errors of logic about specific causation deals with sufficiency-of-
evidence rules about epidemiologic evidence. Some courts have adopted the
rule that if the available evidence is entirely epidemiologic in nature, then a
finding of specific causation is not warranted unless the relative risk of the
type of outcome over the baseline risk is greater than 2.0.** They have ap-
plied this rule even outside the context of a patient’s lawsuit against her
doctor.”*' When relative risk is less than 2.0, the number of exposure-caused

7. I
318. 140 F.3d 381, 391 (2d Cir. 1998) (emphasis added).
319.  Seeid. at 350-91.
320.  See, e.g., DeLuca v. Merrell Dow Pharm., Inc., 911 F.2d 941, 957-59 (3d Cir. 1990); Camruth &
Goldstein, supra note 257; Finley, supra note 257, at 347-64. In Deluca, the Court of Appeals reasoned
from the plaintiff’s burden of proving causation by “a more likely than not standard” to a requirement that
epidemiologic evidence alone would be legally insufficient evidence of specific causation unless it showed a
“relative risk of limb reduction defects” of at least two, quoting with approval the following passage from
Manko v. United States, 636 F. Supp. 1419, 1434 (W.D. Mo. 1986), aff’d in relevant part, 830 F.2d 831 (8th
Cir. 1987):
A relative risk of “2” means that the disease occurs among the population subject to the event
under investigation twice as frequently as the disease occurs among the population not sub-
ject to the event under investigation. Phrased another way, a relative risk of “2” means that,
on the average, there is a fifty per cent likelihood that a particular case of the disease was
caused by the event under investigation and a fifty per cent likelihood that the disease was
caused by chance alone. A relarive risk greater than “2" means that the disease more likely
than not was caused by the event.
DelLuca, 911 F.2d at 958-59. See also Black & Lilienfeld, supra note 181, at 767 (“If, in an exposed
population, more than half the cases of a disease can be attributed to the exposure . . . then absent other
information about a diseased individual, it is more likely than not that his or her illness was caused by
the exposure.”). Moreover, epidemiologic evidence cannot be sufficient to establish causation unless the
relative risk is “greater than 2.” Id. at 769.
321. E.g., Deluca, 911 F.2d at 941 (the claim alleged that Bendectin was a defective pharmaceutical
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cases in the reference group is estimated to be less than the number of base-
line cases. These courts consider it therefore unreasonable for a factfinder to
infer that the specific plaintiff is more likely to be an exposure-caused case
than a baseline case.”” The analysis in this Article demonstrates, however,
that without a warranted finding that the reference group in the major prem-
ise is acceptably complete and representative of the particular plaintiff, then
the magnitude of the relative risk is of unknown relevance to the plaintiff.
Even a relative risk much higher than 2.0 would be of unknown rele-
vance.*® Therefore, when there are significant uncertainties inherent in any
direct inference, then the cases should be decided on grounds of fairness or
other substantive policies. Courts cannot avoid adopting appropriate policies
in these cases by relying instead on mistaken reasoning about the probative
value of the relative risk.

3. Judges as Gatekeepers of Evidence and Rules of Admissibility

A series of cases in the federal courts of the Ninth Circuit illustrates
how judges have used flawed reasoning about specific causation to adopt
rules about the admissibility of expert testimony. The Supreme Court’s de-
cision in Daubert v. Merrell Dow Pharmaceuticals, Inc. (“Daubert’) was on
a writ of certiorari to the United States Court of Appeals for that circuit.***
In that case, the plaintiffs brought suit against the marketer of the prescrip-
tion drug Bendectin, claiming that their serious birth defects were caused by
their mothers’ ingestion of the drug.*®® The Supreme Court held that Federal
Rule of Evidence 702, which governs the admissibility of expert testimony
in federal courts, sets out a two-prong test.’? First, for any assertion of the
expert to be admissible as “scientific knowledge” under the rule, it must
meet a standard of “evidentiary reliability” by being “derived by the scien-

product).

322.  Some judicial opinions struggle to sort out the logical issues involved, but fail. One court, while
recognizing “that there is not a precise fit between science and legal burdens of proof,” remained per-
suaded “that there is a rational basis for relating the requirement that there be more than a ‘doubling of
the risk’ to our no evidence standard of review and to the more likely than not burden of proof.” Merrell
Dow Pharm., Inc. v. Havner, 953 S.W.2d 706, 717 (Tex. 1997). Although the court explicitly did not
hold “that a relative risk of more than 2.0 is a litmus test,” it nevertheless used that test repeatedly in
rejecting the proffered epidemiologic evidence as insufficient. Id. at 718, 724-28.

323.  Some authors have suggested that a relative risk greater than 2.0 is a “threshold” that would
permit an inference to specific causation, provided that individuating and biasing factors are taken into
account. £.g., Green et al., supra note 6, at 384-86 (stating that such “threshold” reasoning is condi-
tioned on a number of assumptions, including that “the relative risk found in the [epidemiologic] study is
a reasonably accurate measure of the extent of disease causcd by the agent” and that “the plaintiff in a
given case is comparable to the subjects who made up the exposed cohort in the epidemiologic study and
that there are no interactions with other causal agents™). This Article provides the logical foundation for
such suggestions, and guidance for developing rules in pursuit of them.

324. 509 U.S. 579, 585 (1993).

325. Id at582.

326.  Seeid. at 589-92,
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tific method.””” Second, the testimony must “assist the trier of fact” by
being relevant to the issues in the particular case.’?®

Upon remand, the court applied this standard to the proffered expert tes-
timony in the case.*” “Daubert I states that only one of the plaintiffs’
experts, Dr, Palmer, offered an opinion of specific causation based on plain-
tiff-specific information.” The court held, however, that “Dr. Palmer of-
fer[ed] no tested or testable theory to explain how,” from his review of the
plaintiffs’ medical records, “he was able to eliminate all other potential
causes of birth defects.”®' The court held as a matter of law that Dr.
Palmer’s testimony failed Daubert’s first prong requiring “sound sci-
ence.””*

The court divided the remainder of the plaintiffs’ expert testimony into
three categories based on the nature of the supporting evidence-—-namely,
statistics drawn from epidemiologic studies, conclusions based on causal
studies in laboratory animals, and conclusions based on similarity of chemi-
cal structure between Bendectin and other drugs suspected of causing birth
defects.”” With regard to the last two categories, the court probably doubted
that the testimony could pass the first-prong test of scientfic soundness,
especially given the lack of scientific consensus about causation in hu-
mans.>* Those doubts, however, would normally require a remand to the
district court for further proceedings under the new standard.” The testi-
mony based on animal studies and chemical structure, however, had a fatal
flaw as a matter of law under the second prong.”® The test under the second
prong is whether there is a relevance “fit” between the proffered testimony
and specific causation.*”” The animal-study and chemical-structure experts,
however, only testified “to a possibility rather than a probability” and did
not “quantify this possibility.”**® Therefore, their conclusions failed to fit

327,  Id. at 589-90.

328, Id. at591-92,

329.  Daubert v. Merrell Dow Pharm., Inc., 43 F.3d 1311, 1314-16, 1322 (9th Cir. 1995) (affirming
the district court’s grant of summary judgment without remand after applying “the new standard an-
nounced by the Supreme Court”). This case will be referred to as “Daubert I,

330,  Daubert IT, 43 F.3d at 1319 (describing Dr. Palmer as “the only expert willing to testify ‘that
Bendectin did cause the limb defects in eack of the children’”) (emphasis added); id. at 1320 n.12 (stat-
ing that “{u]nlike the other experts, who speak in terms of probabilities, Dr. Palmer goes so far as to
conclude that plaintiffs’ injuries were in fact caused by Bendectin rather than another cause”).

331.  Jd. at 1319 (agreeing “with the Sixth Circuit’s observation that ‘Dr. Palmer does not testify on
the basis of the collective view of his scientific discipline, nor does he 1ake issue with his peers and
explain the grounds for his differences’™).

332.  Id.at 1316, 1319.

333, Id. at 1314,

334, Seeid.

335.  Id. at 1320 (concluding that “[w]ere [the first-prong test] the only question before us, we would
be inclined to remand to give plaintiffs an opportunity to submit additional proof that the scientific
testimony they proffer was “derived by the scientific method’”).

336. Seeid. a1 1322.

337. I4. at 1320 (holding as the “traditional burden” of the plaintiffs that “they must prove that their
injuries were the result of the accused cause and not some independent factor”) (emphasis added).

338.  Id. at 1322 {citing Turpin v. Merrell Dow Pharm., Inc., 959 F.2d 1349, 1360 (6th Cir. 1992)).
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the plaintiffs’ need to prove specific causation by a preponderance of the
evidence.””’ .

The only remaining testimony was the epidemiology-based testimony.
Here again, the court saw no need for a remand, either under the first prong
of Dauberr'™ or under the “fit” requirement of the second prong.**' The
court did not remand for a determination of “fit” because it applied a rule
something like the following:**

If the plaintiff has the burden of proving specific causation by a
preponderance of the evidence,

and if the only or principal evidentiary support for causation con-
sists of statistics derived from epidemiologic evidence,

then expert testimony on causation can satisfy the “fit” requirement
of Daubert only if there is sufficient evidence for a reasonable fact-
finder to find that the relative risk created by the hazard for the
plaintiff’s type of injury is greater than 2.0 when compared to the
baseline risk for that same type of injury.

Although Daubert II leaves some uncertainty about the scope of the precise
rule, this formulation reflects the understanding of later judges or courts that
attempted to apply or distinguish the rule.** The only rationale that the
court gives for adopting this rule is the preponderance standard of proof.***
The apparent reasoning is that a factfinder, in the face of such evidence,
should employ a 0.5 inference rule, and the evidence would, therefore, have
to show a doubling of the risk in order to satisfy the “fit” test of admissibil-
ity. The court then reviewed the proffered expert opinions that were based
on epidemiology, found that none of them even claimed that ingesting Ben-
dectin during pregnancy more than doubled the risk,** and held as a matter

339. M.

340. Id. at 1314-16, 1319-20 (stating that the court’s “inclination” to remand also covered the statisti-
cal testimony based on epidemiologic studies).

341, Id. at 1320-22.

342, Daubert IT contains several statements of the rule, including the following two versions: “In
terms of statistical proof, . . . plaintiffs must establish not just that their mothers’ ingestion of Bendectin
increased somewhat the likelihood of birth defects, but that it more than doubled it—only then can it be
said that Bendectin is more likely than not the source of their injury.” /d. at 1320 (emphasis added). “For
an epidemiological study to show causation under a preponderance standard, the relative risk of limb
reduction defects arising from the epidemiological data . . . will, at a minimum, have (o exceed ‘2. Id.
at 1321 (internal quotations omitted and emphasis added).

343, E.g., In re Hanford Nuclear Reservation Litig., 292 F.3d 1124, 1136 (9th Cir. 2002) (interpret-
ing Daubert [l as adopting a “doubling of the risk” test for a case in which “there was no definitive
evidence that Bendectin is a substance capable of causing birth defects,” and therefore “statistical epi-
demiological evidence” was “necessary,” and “plaintiffs relied primarily on epidemiological evidence™).
344.  See Daubert I, 43 F.3d at 1320 (giving as the basis for its rule that “Califomia tort law requires
plaintiffs to show not merely that Bendectin increased the likelihood of injury, but that it more likely
than not caused their injuries™).

345.  id. at 1320-21.
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of law that the proffered testimony was inadmissible because it failed the
second prong of Daubert.**

From a purely epistemic standpoint, the reasoning behind this admissi-
bility rule requiring RR > 2.0 has several logical flaws.**’ First, the proba-
tive value of the relative risk is unknown without a warranted finding that it
describes a reference group that is adequately representative for the individ-
ual subject of the direct inference. One might argue that the mere relevance
of a relative-risk value is established if the data are about human beings, a
group of which the plaintiffs are members. But the magnitude of the rela-
tive-risk statistic has unknown probative value for a direct inference unless
the evidence warrants a finding that the reference group is adequately repre-
sentative of the subject of that inference, and there is a decision that any
incompleteness in defining the reference group is acceptable. Without
acceptable uncertainty about plaintiff-representativeness, the stability of the
relative-risk statistic is unknown, and that statistic might increase or de-
crease as additional factors are taken into account.*®

Second, the evidence in the Daubert case convinced the court that sci-
entists do not know the causal mechanisms that bring about the kind of limb
reduction suffered by the plaintiffs.’* In fact, the court thought that there
was ample evidence in the record for finding that most causes of limb re-
duction are unknown.** Therefore, there was good evidence that no refer-
ence-group profile could be complete and that any direct inference to a spe-
cific case would be epistemically unwarranted. If this is true, then it is mis-
taken to conclude (or suggest) that if the relative-risk values from the same
epidemiologic studies had happened to be higher than 2.0, then the probabil-
ity in the individual case would have been over 0.5. Such reasoning is mis-
leading not only to plaintiffs, but also to judges, who might feel relieved of
the burden of giving policy justifications for their admissibility rules.

Third, once the logic of direct inference is understood, it should be clear
that there is nothing peculiarly different about epidemiologic evidence. It
does not matter which scientific methodology establishes the general causal
relevance of the various risk factors. General causal relationships might be
established by toxicology using animal models, epidemiology using human
data, mechanistic experiments at the subcellular level, or other methods.
The evidence does not even need to be scientific in any strict sense, for
many areas of specialized activity rely upon accepted generalizations about

346,  Id. at 1320-22.

347.  For a critique of simplified admissibility rules, including relative risk rules, see Cranor et al,,
supra note 253, at 25-62 (arguing that it is “important to avoid the temptation to adopt overly stringent
admissibility rules for scientific evidence”).

348,  The court also erred in stating that “[a] relative risk of less than two . . . actually tends to dis-
prove legal causation, as it shows that Bendectin does not double the likelihood of birth defects.”
Daubert I, 43 F.3d at 1321.

349,  [Id.at1313-14.

350. Cf. id. at 1320 (siating that “we know that some [birth] defects—including limb reduction de-
fects—occur even when expectant mothers do not take Bendectin, and that most birth defects occur for
no known reason’).
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causation.”' The plaintiff-specific reference-group profile should include all
known or suspected causally relevant factors, regardless of the type of evi-
dence that establishes the causal relevance. The decisions that factfinders
must make about uncertainty are not created because the available evidence
happens to be epidemiologic. Unfortunately, once the doubling-of-risk ad-
missibility rule is adopted as a rule about epidemiologic evidence, courts
and parties may start looking for better kinds of evidence than epidemiol-
ogy. Such a quest, however, misunderstands the nature of the logical prob-
lem.

Finally, because the court thought that its admissibility rule followed
logically from the preponderance-of-the-evidence standard of proof, it did
not bother to explore policy justifications for its rule. Such mistaken reason-
ing by the court is not harmless error, because the court ended up adopting a
doubling-of-risk admissibility rule without giving any appropriate policy
grounds for doing so. The court failed to appreciate that the epistemic rea-
soning it gave was flawed and also failed to supply any other justification.
Perhaps if the court had analyzed the direct inference correctly, it would
have sought out more appropriate policy rationales and better justifications
for its rules of admissibility.

These logical errors have continued to infect cases in the Ninth Circuit,
as illustrated by the legal fate of claims concerning exposure to radioactive
emissions from the Hanford Nuclear Weapons Reservation in southeastern
Washington.””> Thousands of plaintiffs alleged that they were harmed by
exposure to such emissions and sued the parties that operated the Hanford
facility when the emissions occurred.”® In 1991, the district court consoli-
dated all of the actions and later divided discovery into three phases.’
Phase I consisted of document production and interrogatories about the op-
erating and emissions history and about the “glajntiffs’ exposures, medical
histories, and relevant illnesses and injuries.”™ % Phase II was to “focus on
causation,” including expert witness reports.’>® The court later bifurcated
this second phase into two parts, dealing with generic causation and specific
causation. The final Phase III would include general liability and other
remaining issues.>>

351.  Federal Rule of Evidence 702, the rule at issue in Daubert and Daubert 11, applies to “scientific,
technical, or other specialized knowledge.” FED. R. EVID. 702. The logical analysis of this Article applies
to all direct inferences to specific causation, and therefore to all expert testimony about specific causa-
tion, whether scientific or not. E.g., Kumho Tire Co., Ltd. v. Carmichael, 526 U.S. 137, 14347, 153-58
(1999) (involving expert testimony on the cause of a specific tire blow-out).

352.  Inre BergLitig., 293 F.3d 1127, 1129 (9th Cir. 2002); In re Hanford Nuclear Reservation Litig.,
292 F.3d 1124, 1126-27 (9th Cir. 2002).

353.  Hanford, 292 F.3d at 1126-27.

354. Id. at 1128-29; In re Hanford Nuclear Reservation Litig., No. CY-91-3015-AAM, 1998 WL
775340, *2 (E.D. Wash, Aug. 21, 1998).

355.  Hanford, 292 F.3d at 1129; In re Hanford Nuclear Reservation Litig., 1998 WL 775340, at *2.
356. Hanford, 292 F.3d at 1129.

357. M

358. Id.
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In March and June of 1997, while discovery was still in the generic-
causation stage of Phase II, and while discovery on individual medical cau-
sation was not yet permitted under the district court’s discovery manage-
ment order, the defendants filed motions for summary judgment.*® In Au-
gust of 1998, the district court entered a 762-page order that largely granted
the defendants’ motion.’® The few claims that survived summary judgment
were those that passed muster under the district court’s interpretation and
application of the doubling-of-risk rule from Dauberr I1°*' Plaintiffs who
were dismissed from the litigation by the district court’s summary judgment
appealed, contending both procedural error in granting summary judgment
at the generic causation phase of discovery and substantive error in applying
the doubling-of-risk rule.’® In June 2002, the Court of Appeals reversed the
lower court’s grant of summary judgment and remanded for further pro-
ceedings.’® The litigation therefore raised two issues: how to distinguish
between general causation and specific causation in practice, and how to
interpret and apply the admissibility rule adopted in Daubert I1.

The distinction between general causation and specific causation can
begin to blur in toxic tort cases because the dose actually received by a par-
ticular plaintiff appears relevant to deciding whether the toxic agent can
cause adverse effects at that dose.”® The reasoning and the doubling-of-risk
rule of Daubert II compounds the confusion by testing the admissibility of
expert testimony in part by the “fit” of the testimony to proving specific
causation. The district court’s partial summary judgment in Hanford ex-
cluded expert testimony on generic causation that did not pass this test of
“fit.”*®* The Court of Appeals reversed the district court’s application of the
Daubert Il admissibility rule because in Hanford, unlike Daubert 11, there
was ample evidence in the record that radiation can cause a broad range of
injuries even at low doses.’® In reaching this decision, however, the appel-
late court may have sown even more confusion with the following comment
on the Daubert II rule: “It is critical to stress that the plaintiffs in Dauberr 11
had no scientific evidence that Bendectin was capable of causing birth de-
fects (generic causation), and therefore were required to produce epidemiol-

359.  Id. at 1129-30, 1134-35; in re Hanford Nuclear Reservation Litig., 1998 WL 775340, at *9.

360, Hanford, 292 F.3d at 1131.

361.  Id. at 1131-32; In re Hanford Nuclear Reservation Litig., 1998 WL 775340, at *328-32.

362. Hanford, 292 ¥.3d at 1133-37.

363. Berg, 293 F.3d at 1133; Hanjord, 292 F.3d at 1138-39.

364.  See, e.g., Sterling v. Velsicol Chem. Corp., 855 F. 2d 1188, 1200 (6th Cir. 1988) (stating that
“generic and individual causation may appear to be inextricably intertwined” when dealing with “a kind
of generic causation—whether the combination of the chemical contaminants and the plaintiffs’ expo-
sure to them had the capacity to cause the harm alleged”); Hanford, 292 F.3d at 1130-35 (describing the
confusion and arguments over how to classify contested issues of fact and law when discovery was
bifurcated into generic causation and individual causation).

365.  Hanford, 292 F.3d at 1132 (“Expert testimony indicating only that the radiation emitied from
Hanford was capable of causing a disease was excluded as irrelevant unless it also passed muster under
the ‘doubling of the risk’ standard, i.e., unless the expert opined that the radiation emissions amounted to
a ‘doubling dose.”™); In re Hanford Nuclear Reservation Litig., 1998 WL 775340, at *13, *33().

366.  Hanford, 292 F.3d at 1137.
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ogical studies to prove that Bendectin more likely than not caused their own
particularized injuries (inchvidual causation).?*’

This reasoning raises a number of questions. First, the plaintiffs in
Daubert IT were in fact trying to introduce not only epidemiologic evidence,
but also evidence from laboratory animal studies and chemical structure
analyses.’® The court in Daubert If excluded that proffered scientific evi-
dence as inadmissible, not because it was irrelevant to general causation, but
precisely because it lacked the required “fit” to specific causation and there-
fore would not be helpful to the trier of fact.’® Therefore, it would seem
that the district court in Hanford was interpreting Daubert 1l correctly. On
remand, therefore, the district court may conclude that its only error was
applying the Daubert II tule too early in the proceeding, but that using the
rule against the plaintiffs would be appropriate during the specific-causation
stage of discovery.

Second, the passage reinforces the suggestion that epidemiologic stud-
ies are not “scientific” and have some lower epistemic status. This rein-
forces the notion that the Daubert II admissibility rule should apply only to
epidemiologic evidence and has no relevance to (real) “scientific evidence.”
For reasons argued above, this belief that the problem of warranting a direct
inference to specific causation is due to the nature of epidemiologic evi-
dence is a mistake of logic. And it is not a harmless mistake, because the
belief may place needless pressure on future litigation to police a bright line
between “epidemiological studies” and “scientific evidence.”

A logical analysis of direct inference can clarify these confusions and
put tort law about specific causation on a proper policy foundation. General
causation is indeed a logically prior and distinct issue from specific causa-
tion. A reasonable factfinder would first determine the list of causally rele-
vant variables for the plaintiff’s kind of injury. In toxic tort cases where
extent of exposure is critical, general causation includes characterizing the
available dose-response knowledge, especially within the range of expo-
sures allegedly relevant to the plaintift’s case. If exposure to the hazard is
found to be a causally relevant factor for the plaintiff’s type of injury, then
the investigation of specific causation can begin by establishing the plain-
tiff’s reference-group profile on all of the variables known or suspected to
be causally relevant. The specific-causation inquiry can then proceed to the
questions of adequate completeness of the causal model and the uncertainty
associated with the plaintiff’s relative risk. Therefore, the line between gen-
eral and specific causation can be reasonably bright if drawn along logical

367. Id ar1136-37.

368.  Dauberr il, 43 F.3d at 1314-16, 1319-22.

369,  If the decision in Daubert II had not rested on “fit” 1o specific causation, the court would have
ordered a remand to the district court. See supra text accompanying notes 333-39. As the Supreme Court
reasoned in Daubert, the study of the phases of the moon may well provide valid scientific knowledge,
but “(absent creditable grounds supporting such a link), evidence that the moon was full on a certain
night will not assist the trier of fact in determining whether an individual was unusually likely to have
behaved irrationally on that night.” Daubert, 509 U.S. at 591.
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lines. Courts can adopt decision rules within those boundaries on appropri-
ate policy grounds, and judges can manage complex tort cases using those
rules and boundaries.

Once the conceptual boundaries are clear, this sharpens the issue of
adopting a doubling-of-risk rule of admissibility. The analysis in this Article
leads to the conclusion that the rule, as applied in Daubert Il and by the
district court in Hanford, rests upon an error about the logic of warranted
findings about specific causation. On remand, the district court in Hanford
should resolve those logical issues correctly. A relative risk value is of un-
known probative value to any particular plaintiff unless the reference group
is acceptably representative of that plaintiff. In the case of some plaintiffs,
with certain exposures and injuries, the causal model may be well enough
understood that an expert opinion about specific causation is admissible
under Daubert. In many other cases, however, there may be good evidence
that the reference-group profile is substantially incomplete or that the avail-
able statistics for the reference group are unacceptably uncertain. In such
cases, when plaintiffs have taken all reasonable steps to produce sufficient
evidence, the courts should decide on policy grounds when to dismiss the
cases and when to give them to the jury. It seems unlikely, however, that a
bright-line rule based on the mere magnitude of relative risk will be justifi-
able on policy grounds. What the courts are not free to do is to take refuge
in the illusion that this is a question of logic, not policy. Logic dictates that
it must be a matter of policy.

CONCLUSION

The traditional tort requirement that the plaintiff must prove specific
causation by a preponderance of the evidence has led to mistaken judicial
reasoning in recent cases. Courts have used faulty logic about the warrant
for specific causation to adopt rules for factfinding, rules for deciding that
the totality of admitted evidence is legally insufficient, and rules for exclud-
ing expert testimony from the case. In mistaking the logical nature of the
problem, they have sometimes limited these rules to toxic tort cases, or to
epidemiologic evidence, or to scientific evidence. In so reasoning and rul-
ing, they have removed individual plaintiffs as the subjects of factfinding
and have substituted instead an abstract, “statistical individual.” This Arti-
cle, by analyzing the logic of warranted direct inference about specific cau-
sation, shows the way out of these errors. Direct inferences are warranted by
findings that six types of inherent uncertainty are within acceptable bounds:
measurement uncertainty, sampling uncertainty, modeling uncertainty,
causal uncertainty, uncertainty about plaintiff-representativeness, and uncer-
tainty about assigning a probability to a specific plaintiff. In cases involving
significant uncertainty—whether in products liability, medical malpractice,
or toxic torts—decisions about acceptable uncertainty are neither factual nor
scientific in nature. Those decisions should depend, not upon mistaken sta-
tistical reasoning, but upon common sense, fairness, and justice, as well as
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on the substantive and process policies of tort law. It is time to correct the

central fallacy, reject the “junk logic” that has wrongly driven the cases, and
restore the individual plaintiff to the factfinding process.
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